Editor's Choice


Innovating in the process industry with PLM

December 2017 Editor's Choice IT in Manufacturing

There is no doubt that with Industrie 4.0 there is a lot of innovation taking place in manufacturing IT. But ‘innovation’ is not only the creation of a new idea out of nothing, but more often the combination of two existing ideas in a new way to create something entirely new. For example, by combining a telephone, a music player, a camera and a GPS into a single smart device we create a range of new experiences and possibilities for communication, entertainment and travel. The value of the sum of the parts is more than that of the individual components.

Technology sharing across industries

The same thinking can be applied to IT solutions used in manufacturing. In one particular vertical industry a technology might have developed to maturity, and yet still be relatively invisible to another. This means that innovation is possible by simply applying the solutions from one industry in the other. In my consulting role, I have found that owing to industry specialisation surprisingly little experience is shared between vertical industries, and people tend to stick with the established techniques they know. There might be an opportunity for you to adopt a proven technique from another industry in a new way and thereby gain a competitive edge for your business in its own niche.

As industrial manufacturers face new challenges and opportunities arising from increased digitisation, many are looking to improve their existing MES architecture to support future strategic initiatives. Superficially they might refer to Industrie 4.0 as the driving force behind this change. But Industrie 4.0 is not a platform, it originated as an initiative in Germany to maintain and protect the competitiveness of the manufacturing sector. It cannot be purchased, nor implemented in the way an ERP solution might be, but rather describes a future of interconnected businesses involving cyber-physical systems, cloud computing, the Internet of Things and cognitive computing. This will manifest in many practical ways in your own business.

In the traditional vertical process industries such as oil and gas, chemicals, pulp and paper, and so on, the emphasis is on maximising the return on assets in capital intensive plants and minimising the cost of production of bulk commodity products. New product development, personalised products for customers and responsive supply chains are important, but in practice, these specific requirements are nowhere near as well developed as they are in fast moving discrete industries such as consumer goods, aerospace, etc.

The reality is that Industrie 4.0 will introduce increased volatility and change, and even the large commodity process companies will need to adapt. Is there then a technique we can learn, or a concept that we can take from the world of discrete manufacturing to apply in a process manufacturing plant that might provide a good foundation (or platform)? This will then create a more resilient business capable of responding to increasing volatility and change. In other words could we innovate in the world of process manufacturing by simply taking an existing IT solution from the world of discrete?

Product lifecycle management

In this regard, it might be worth taking a closer look at PLM (product lifecycle management). PLM originated to allow component manufacturers in the automotive supply chain to supply new products rapidly in response to the fast moving requirements of the motor manufacturers. PLM has since matured into a well established business process widely used in discrete manufacturing, but it is far less common in process manufacturing companies.

PLM tracks the lifecycle of each product from concept to design and engineering, manufacturing, quality and service management. A typical PLM environment is a formal system of collaboration to enable rapid product development and engineering, portfolio management, technical data management, service management and continuous improvement. These processes are supported by a governance and compliance layer that ensures that changes are controlled, approved and in line with the requirements of legislation and the companies own standards.

The adoption of PLM in process manufacturing has been slower than in discrete manufacturing owing to the intrinsic nature of their asset intensive operations.

A chemicals plant might have a few dozen products at most, and sell these in high volumes to relatively few customers. Historically there was little need for customisation in such a scenario, and a dedicated plant will typically make a single product to specification. The product is generally produced to stock.

In contrast, discrete industries have high numbers of personalised products which are generally made to order. The complexity of managing a large portfolio of these unique products requires significant collaboration across multiple disciplines including development, engineering, sales and service. This collaboration platform is potentially of interest to a process company facing a much more complex and dynamic challenge as Industrie 4.0 takes hold across the industry.

A PLM solution is far more than a simple document management system with workflows. PLM systems support the process of inception, design and engineering, right through to real-world monitoring. The whole value chain is modelled through the product lifecycle allowing for optimisation across multiple disciplines and organisational function/departments.

The future manufacturing environment described by Industrie 4.0 is a dynamic one, where information flows alongside physical product. The pace of change will be significant, not only in the actual product requirements, but also in raw materials, pricing, regulatory requirements, territories and so on. Furthermore, service levels will become more complex to maintain as customers demand more unique and personalised supply contracts. The impact of these dynamic and fast moving changes on the core manufacturing value chain should really be managed by a platform that is much better than the existing disconnected ‘electronic scraps of paper’ found in most companies.

Gavin Halse

Gavin Halse is a chemical process engineer who has been involved in the manufacturing sector since mid-1980. He founded a software business in 1999 which grew to develop specialised applications for mining, energy and process manufacturing in several countries. Gavin is most interested in the effective use of IT in industrial environments and now consults part time to manufacturing and software companies around the effective use of IT to achieve business results.

For more information contact Gavin Halse, Absolute Perspectives, +27 (0)83 274 7180, [email protected], www.absoluteperspectives.com





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Connecting every transport node
RJ Connect Editor's Choice Data Acquisition & Telemetry
Stockholm's bus system strategically links urban mainline, suburban mainline, non-mainline routes, community service buses and night buses. To acquire and process data from multiple sources and analyse onboard information on their moving buses, Transdev sought a dependable and powerful onboard computer. It teamed up with CatAB, Moxa’s local representative, known for delivering top-notch industrial data communication boards and equipment since 1988.

Read more...
Local range of planetary units
SEW-EURODRIVE Editor's Choice Motion Control & Drives
As SEW-EURODRIVE South Africa actively extends its offerings to customers, the SEW PPK and SEW P2.e industrial gearbox ranges are good examples of solutions that are well suited to the local business environment.

Read more...
Case History 195: Unstable reboiler steam flow
Michael Brown Control Engineering Editor's Choice
A high-pressure steam flow control in a reboiler on a column in a petrochemical refinery continually cycled when placed in automatic. Several attempts had been made to tune the controller, but these had been unsuccessful.

Read more...
Open control system for retrofit of conveyor control system
Beckhoff Automation Editor's Choice
For every online retailer, warehouse logistics is part of the critical infrastructure. An Australian office equipment supplier has retrofitted the warehouse logistics installation of its central warehouse, and replaced the proprietary decentralised controllers of the conveyor lines with PC-based control from Beckhoff, based on powerful EtherCAT communication.

Read more...
Digital industrial platforms and why they are important
Editor's Choice
One of the most significant trends driving digital transformation is the emergence of digital industrial platforms. This article will briefly explore what digital industrial platforms are, why they are important, and how they might shape the future of industrial automation.

Read more...
Celebrating 65 years: rebuilding and redefining its legacy
Editor's Choice News
Founded in 1959 by Neill Simpson, Axiom Hydraulics has grown into one of South Africa’s elite hydraulic companies. Over the past six and a half decades they’ve weathered many challenges, but none as devastating as the fire of 2023.

Read more...
Young robotics team takes world title
igus Editor's Choice News
In an inspiring demonstration of innovation and teamwork, Texpand, a young South African robotics team, recently made history by winning the 2024 FIRST Tech Challenge World Championships.

Read more...
SAIMC: It’s not black and white
SAIMC Editor's Choice SAIMC
Grey imports are a problem worldwide, not least in the automation industry in South Africa. The Supplier Advisory Council (SAC) operates under the umbrella of SAIMC, and is tackling this problem head-on.

Read more...
Loop signature 25: Tuning part 3 - Results of tuning a particular simple self-regulating process by several different methods.
Michael Brown Control Engineering Editor's Choice
A couple of SWAG methods of tuning were given in the previous Loop Signature article. I have tuned a simple self-regulating process using those methods, and two other tuning methods, one of them being the sophisticated Protuner tuning package, which is the system I employ. The tests were performed on a very accurate and powerful simulation package, and the results are compared below.

Read more...
PC-based control for advanced hydrogen storage technology
Beckhoff Automation Editor's Choice PLCs, DCSs & Controllers
The proportion of renewable energies from solar, wind and water is rising continuously. However, sufficient storage options are of the essence to use these energies as efficiently as possible. GKN Hydrogen offers a particularly compact and safe option, low-pressure metal hydride hydrogen storage systems with PC-based control from Beckhoff.

Read more...