Editor's Choice


Case History 195: Unstable reboiler steam flow

November 2024 Editor's Choice

A high-pressure steam flow control in a reboiler on a column in a petrochemical refinery continually cycled when placed in automatic. Several attempts had been made to tune the controller, but these were unsuccessful. The operators had to control the flow manually, but had great difficulty in getting it to the desired flow value.

Some open and closed loop tests were performed on the flow, and they revealed some remarkable things. Figure 1 is a test, with the controller firstly being set in automatic (closed loop testing), with the ‘as-found’ tuning parameters in the controller, and a few small set point (SP) steps being made. Once that was done the controller was placed in manual (open loop testing) and some steps were made on the controller output (PD).

Observations made from the closed loop section of the test

• The loop was in a continuous cycle, which appeared to be caused by bad tuning. Although it is hard to see in the test due to the aliasing of the signals, caused by a relatively slow scan rate in the OPC data interchange system used to pick up the signals from the DCS, this could be confirmed by running a frequency analysis on the PV signal. This revealed that the period of the dominant frequency in the cycle was approximately 13 seconds. This is typical of the frequency of cycling caused by instability due to bad tuning for a flow loop. As a general note, such cycling generally occurs at a frequency close to the ultimate (or natural resonant) frequency of a closed loop flow control loop.

• The amplitude of the cycle on the PD was very much smaller than that of the process variable (PV). This would indicate a process gain much greater than unity. Process gain is the ratio of the change in PV over the change in PD. This would indicate a largely oversized valve.

• This is also confirmed by the fact that the average value of the PD in the cycle was around 7%, which assuming that the transmitter and valve calibrations were correct, meant that the valve was working far too close to seat. A well-established rule of thumb for most types of pneumatically operated valves is that under normal control conditions they should operate at or above 20% opening. There are two reasons why valves should not work close to the seat. Firstly, they may encounter excessive differential pressure, with which their actuators cannot cope; secondly, the manufacturers find it very difficult to machine the valve seats and/or plugs so that the correct inherent flow characteristics can be maintained, so installed nonlinear characteristics may be encountered at low flows.

Observations made from the open loop section of the test

• The installed characteristics of the valve are nonlinear, which is shown by several small equal steps in the PD being made, and the magnitude of PV increasing with each subsequent step.

• The PV jumps around at times when the PD is steady, which would indicate a possible slight play in the linkages between actuator and actual valve.

• The total change in the PV is about 10 times greater than that of the PV, which would indicate that the valve is possibly about 10 times oversized, confirming the observation made above in the closed loop section of the test.

Figure 2 shows a section of an open loop test made with a step made on the PD. The purpose was to try and establish tuning values that could possibly work. It is of interest that, in this step, the process gain was calculated to be a massive 34.

A closed loop test using the new tuning is shown in Figure 3. Interestingly, some sort of poor closed loop control was actually now being achieved. However, it can be seen that the PV again suddenly moved by itself at one point, probably due to play in linkages. It also showed that the PV apparently did not move properly on two of the SP step changes, and also apparently exhibited a lot of dead time as seen on the first large SP change downwards.

However, one must be reasonable. To get the PV to move, the PD has to move only a tiny amount, and this must be done quite slowly to avoid instability. The valve was actually doing quite a remarkable job, but it is absolutely ridiculous to try and get good control with such a massively oversized valve. There was no doubt that the valve needed replacing with a smaller one.

For the record, the original tuning was P = 0,15, and I = 0,7 minutes per repeat, whereas the new tuning was P = 0,01, and I = 0,09minutes per repeat. The original P gain was 15 times too large and resulted in the instability. Typically flow loops need tuning with a small gain and a fast integral. The original tuning is a good example of really bad ‘trial and error’ tuning.


About Michael Brown


Michael Brown

Michael Brown is a specialist in control loop optimisation, with many years of experience in process control instrumentation. His main activities are consulting and teaching practical control loop analysis and optimisation. He now presents courses and performs optimisation over the internet. His work has taken him to plants all over South Africa and also to other countries. He can be contacted at: Michael Brown Control Engineering CC, +27 82 440 7790


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

The future of industrial automation: fieldbus and industrial networking
LAPP Southern Africa Editor's Choice
As a global leader in integrated solutions in the field of cable and connection technology, LAPP recognises that fieldbus and industrial networking technologies are pivotal in shaping the future of manufacturing and production processes.

Read more...
AI-driven innovations with CCTV and cyber security
RJ Connect Editor's Choice Fieldbus & Industrial Networking
The fast progress of artificial intelligence (AI) and video analytics is redefining the rail surveillance landscape. Advancements have bolstered proactive event detection, predictive maintenance and enhanced situational awareness.

Read more...
Loop signature 27: SWAG tuning of simple integrating processes.
Editor's Choice
The chief control engineer of one of the largest petrochemical refineries in South Africa once sent me an email after a course at his plant. He wrote that he had found the section on SWAG tuning of simple integrating processes one of the most informative of the whole course.

Read more...
Harnessing industrial AI agents for reliable automation
Editor's Choice IT in Manufacturing
The excitement around generative AI (GenAI) has been undeniable, promising wide-ranging changes across industries. However, for those of us in the world of industrial control and automation, the realities of implementing these powerful technologies are a little more nuanced.

Read more...
Futureproof your industrial network security with OT-centric cyber security
RJ Connect Editor's Choice
To achieve digital transformation, industrial operators must first address the daunting task of merging their information technology (IT) and operational technology (OT) infrastructure. In this article, we focus on the importance of strong OT network security and provide some tips on how to strengthen cybersecurity for industrial operations.

Read more...
The symbiotic relationship between OEMs and SIs
Schneider Electric South Africa Editor's Choice System Integration & Control Systems Design
While businesses tend to turn directly to original equipment manufacturers OEMs or vendors when embarking on IT projects, the role of the SI as a key facilitator and partner cannot be overstated.

Read more...
Case History 196: Unstable condensate level control.
Michael Brown Control Engineering Editor's Choice Level Measurement & Control
The operators in a petrochemical refinery were having great trouble in trying to stabilise the condensate level in a vessel, and this was adversely affecting other loops downstream. Several unsuccessful attempts had been made to retune the controller.

Read more...
Big themes for 2025
Editor's Choice News
2024 was a year of unprecedented innovation and global upheaval. As we look ahead, Amy Webb, CEO of the Future Today Institute asks which technologies will reshape our world in 2025?

Read more...
Loop signature: Tuning part 4 processes
Michael Brown Control Engineering Editor's Choice Fieldbus & Industrial Networking
The purpose of this particular article is to try and give those unfortunate enough to have to use SWAG (scientific wild ass guess) tuning a bit of an idea of how to go about it, and even more importantly some understanding of a couple of basic principles.

Read more...
EtherCAT and PC-based control elevate next-generation laser cutting machine
Beckhoff Automation Editor's Choice
Cincinnati Incorporated has been building sheet metal processing equipment for 125 years. Since the switch to PC-based control, the only limits to development have been physical.

Read more...