Editor's Choice


Smart devices for Ex areas: Unbelievably simple mistakes that prevent control.

September 2019 Editor's Choice Motion Control & Drives

I am often astounded by finding really basic problems with controls in plants, which have operated that way for years. These problems are so basic that one can only wonder at how these controls could have been commissioned in the first place, as personnel in these plants are usually highly trained. Two examples I recently came across when performing some optimisation work at a large chemical plant are described in this article.

Example 1

The first example is of a gas pressure control that used two split range valves. The valves were effectively in parallel and supposed to operate as follows:

• Valve A is to open 0 – 100% when the PD (controller’s output) goes from 0 – 50%.

• Valve B is to open 0 – 100% when the PD (controller’s output) goes from 50 – 100%.

Split ranging of valves often causes problems with controls for various reasons, particularly at the ‘cross-over’ point, where very careful calibration of the valves is required to ensure that the one valve will take over smoothly from the other. (Another common problem is that split ranging is done without ensuring that the process gain remains constant over the full travel of both valves. If this is not the case, then different tuning will be required for both of the ranges. However, it was not a problem in this case.)

In this example, there was a problem trying to keep the pressure constant at the process load conditions operating at that time. Normally operators overcome control problems by running a loop in manual. However in this case, they were really battling to achieve control.

A young control engineer in the plant had been tasked to tune the controller and had been battling for some time. Pressure control can be quite difficult to optimise on occasion, as gaseous pressure processes can be self-regulating or integrating depending on various factors in the process. In this case the tests quickly established that the process was a fairly fast integrating one. However, whatever she did to try and get an open loop test with a proper response representing the process dynamics did not seem to work, and it seemed impossible to get the process into balance.

[Note: an integrating process, which is similar to a level control, is only at a constant state when the input to the process is equal to the output from the process. The value of the PD (controller’s output value) at that point is known as the balance point.]

When we started analysing the loop in more detail, it was decided to check if the valve split ranging was working correctly. At the load conditions at the time the tests were being done it appeared as if the balance point on the PD was probably between 50 and 60%.

Very fortunately we found that there was a flowmeter some distance downstream from valve B, and this enabled us to monitor the actual valve performance. A portion of this test is shown in Figure 1, where the controller was in automatic and the PD was increasing slowly. It can be seen that the flow through the valve was initially at zero. As the PD moved past 50% the flow should have started moving. However, it remained at zero which means the valve was not moving. The valve only started moving when the PD got to 75%.

Figure 1.
Figure 1.

This means that from 50 -75% of the PD, there was no control action. What had happened, which is something I also saw once many years ago, is that someone had tried doing the split ranging on the valve’s positioner, not knowing it had been done in the DCS. In other words the positioner had been programmed to only start opening the valve when its actual input reached 50%.

No wonder there was no control in automatic or in manual as there is a 25% gap where the valve did not move at all! The interesting thing is that this plant has been running for years with this problem, and it didn’t seem to have been noticed until lately. It really boggles one’s mind.

Example 2

The next example is also very interesting. It is of a simple flow control loop, which always had to be operated in manual, as it just would not work in automatic. The figures shown for this example are made from simulated tests, as it would have taken far too much time to actually perform them in real time.

Properly tuned flow loops generally respond to a setpoint change in a few seconds. In this case, if we had performed a closed loop test on the loop with the existing tuning as set in the controller, it can be seen in Figure 2 that it would have taken approximately 5 hours for the loop to respond fully to a 10% setpoint change. This is obviously why they were always running the loop in manual.

Figure 2.
Figure 2.

The open loop test on the flow showed that the valve was almost twice oversized and had an extremely fast response. However, these things are not a problem, and in fact the valve was working very well. No other problems could be seen from the test. Therefore, there must have been something wrong with the tuning. The young engineer who was doing the optimisation had checked the existing tuning that was in the controller. It was supposed to be P gain = 0,2, and I = 0,2 minutes/repeat. These are not unreasonable figures for a fast flow loop.

Further investigation showed that the problem lay in the set-up of the control module. This was because the control system, for some reason, only allows one to insert a minimum proportional gain of 0,1. There are times when one needs a much smaller gain particularly when the final control element is oversized, and the process is fast, like a flow loop. In the particular control system used in the plant, this problem could be overcome by using a controller module with a special gain reduction factor, whereby one can reduce the gain by an additional factor over the whole range of the control.

For some reason this module had been used in this loop, and we found that the gain reduction factor had been set at 0,1. This resulted in an effective proportional gain in the controller of 0.02, which is almost like switching the controller off.

Figure 3.
Figure 3.

Setting the gain reduction factor to unity enabled the module to operate like a normal controller, and with new tuning of P gain = 0,6, and I = 0,1 minutes/repeat solved the problem and enabled the controller to work properly, allowing the process to respond to set point changes in a few seconds as should be the case for flow loops. The response with the new tuning is shown on the same time scale as in the previous figure is shown in Figure 3.

Such basic and simple errors caused huge control problems. Really amazing!

Michael Brown is a specialist in control loop optimisation with many years of experience in process control instrumentation. His main activities are consulting, and teaching practical control loop analysis and optimisation. He gives training courses which can be held in clients’ plants, where students can have the added benefit of practising on live loops. His work takes him to plants all over South Africa and also to other countries. He can be contacted at Michael Brown Control Engineering cc, +27 82 440 7790, [email protected], www.controlloop.co.za



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Connecting every transport node
RJ Connect Editor's Choice Data Acquisition & Telemetry
Stockholm's bus system strategically links urban mainline, suburban mainline, non-mainline routes, community service buses and night buses. To acquire and process data from multiple sources and analyse onboard information on their moving buses, Transdev sought a dependable and powerful onboard computer. It teamed up with CatAB, Moxa’s local representative, known for delivering top-notch industrial data communication boards and equipment since 1988.

Read more...
Local range of planetary units
SEW-EURODRIVE Editor's Choice Motion Control & Drives
As SEW-EURODRIVE South Africa actively extends its offerings to customers, the SEW PPK and SEW P2.e industrial gearbox ranges are good examples of solutions that are well suited to the local business environment.

Read more...
Case History 195: Unstable reboiler steam flow
Michael Brown Control Engineering Editor's Choice
A high-pressure steam flow control in a reboiler on a column in a petrochemical refinery continually cycled when placed in automatic. Several attempts had been made to tune the controller, but these had been unsuccessful.

Read more...
Open control system for retrofit of conveyor control system
Beckhoff Automation Editor's Choice
For every online retailer, warehouse logistics is part of the critical infrastructure. An Australian office equipment supplier has retrofitted the warehouse logistics installation of its central warehouse, and replaced the proprietary decentralised controllers of the conveyor lines with PC-based control from Beckhoff, based on powerful EtherCAT communication.

Read more...
Digital industrial platforms and why they are important
Editor's Choice
One of the most significant trends driving digital transformation is the emergence of digital industrial platforms. This article will briefly explore what digital industrial platforms are, why they are important, and how they might shape the future of industrial automation.

Read more...
Celebrating 65 years: rebuilding and redefining its legacy
Editor's Choice News
Founded in 1959 by Neill Simpson, Axiom Hydraulics has grown into one of South Africa’s elite hydraulic companies. Over the past six and a half decades they’ve weathered many challenges, but none as devastating as the fire of 2023.

Read more...
Young robotics team takes world title
igus Editor's Choice News
In an inspiring demonstration of innovation and teamwork, Texpand, a young South African robotics team, recently made history by winning the 2024 FIRST Tech Challenge World Championships.

Read more...
SAIMC: It’s not black and white
SAIMC Editor's Choice SAIMC
Grey imports are a problem worldwide, not least in the automation industry in South Africa. The Supplier Advisory Council (SAC) operates under the umbrella of SAIMC, and is tackling this problem head-on.

Read more...
Loop signature 25: Tuning part 3 - Results of tuning a particular simple self-regulating process by several different methods.
Michael Brown Control Engineering Editor's Choice
A couple of SWAG methods of tuning were given in the previous Loop Signature article. I have tuned a simple self-regulating process using those methods, and two other tuning methods, one of them being the sophisticated Protuner tuning package, which is the system I employ. The tests were performed on a very accurate and powerful simulation package, and the results are compared below.

Read more...
PC-based control for advanced hydrogen storage technology
Beckhoff Automation Editor's Choice PLCs, DCSs & Controllers
The proportion of renewable energies from solar, wind and water is rising continuously. However, sufficient storage options are of the essence to use these energies as efficiently as possible. GKN Hydrogen offers a particularly compact and safe option, low-pressure metal hydride hydrogen storage systems with PC-based control from Beckhoff.

Read more...