Editor's Choice


Control loop: Case History 153 - Why is the control so terribly erratic?

March 2017 Editor's Choice Motion Control & Drives

I was recently asked to advise on a bad pH control problem in a water treatment plant. A new carbonisation bay had been installed at the plant: Figure 1 shows the layout of the bay and controls. Raw water is initially treated in an upstream plant where it is desilted and it is then fed in at the one end of the bay. It comes out of that plant and into the bay at a fairly high pH value. Carbon dioxide (CO2) is bubbled though the incoming water to lower the pH to a desired value. The bay is quite long with a large flow of water passing through it. Although there is a high speed agitator at the point where the CO2 is injected to ensure rapid mixing, the pH measuring probe is mounted at the opposite end of the bay to ensure that the chemical reaction has completed and full mixing has occurred. This results in a very long deadtime in the process dynamics which makes control much more difficult as will be discussed later.

Figure 1.
Figure 1.

The problem being experienced by the plant people was that control was extremely erratic, and was terribly badly affected by load changes in the form of upstream pH changes, and also flow changes through the bay. The latter is the main problem as the plant does run at quite a wide range of throughputs, which are determined by the operators. Once a change of flow is made the control would go unstable or else literally take many, many hours to come back to setpoint.

A non-linear problem on the plant

On arriving at the plant I found that the pH controller was connected directly to the valve and the CO2 flow controller was not in circuit and was unused. However, a flow measurement is extremely useful in analysing the valve performance. Figure 2 is a test showing how the flow through the valve performed versus steps from the output of the pH controller, which was in manual. We were also lucky enough to have a feedback signal of actual valve position, so that is also plotted.

Figure 2.
Figure 2.

The test showed two faults. The first, which is not terribly serious, is that the positioner/valve combination is almost unstable. This can be clearly seen in the test as there are several cycles of the valve and hence flow after nearly every step change of the controller output. This results in cycling when closed loop flow control is introduced as can be seen in Figure 3. However, although this is not good for the valve it will not really affect the pH control.

Figure 3.
Figure 3.

The second and far more serious problem is that the installed valve characteristics are completely non-linear. It can be seen in Figure 2 that the valve is being opened up in steps of 10%. Initially there is no flow until the valve gets up to 10% when the flow jumps immediately to 5%, then with every further 10% step in valve opening the flow increases initially in very small increments which get larger and larger until at near fully open valve position a 10% step change in the valve results in enormous increases in flow. Plotting the flow versus valve travel shows that the valve has an equal percentage installed characteristic. This plot is shown in Figure 4. Effectively the flow versus valve position responses can change by as much as (an enormous) 10:1 over the whole measurement range!

Figure 4.
Figure 4.

The problem with non-linear installed characteristics is that the control response to a particular set of tuning parameters will vary as one moves though the measuring range, as the process gain is changing.

Why is this serious, particularly in this case?

Firstly, one needs to look at the dynamics of the pH process. Although the tests are not shown here, an open loop analysis of this process at the existing load conditions revealed that they contain a deadtime of about 4 minutes, and two dominant lags of 76 seconds and 23 seconds. This makes for an extremely slow and difficult process as far as feedback control is concerned. Long deadtime in particular is the control engineer’s enemy, and as explained in one of my recent articles (Case History 151), the only way of controlling it with feedback is to slow the control right back to avoid instability. This means that the pH controller has to be tuned really slowly, and this tuning is really critical.

It can now be realised that by connecting the output of the pH controller directly to the valve, it means that if the controller calls for a certain flow of CO2 reagent, it is vitally important that the correct flow does go through the valve. However, with the non-linear installed characteristics of the valve, this can only occur at the one point in the flow measuring range where the tuning was done, and it will be incorrect at all other places.

This is why they were having so much difficulty.

The solution

The obvious solution was to linearise the installed valve characteristics. There are many ways to do this, but the most usual is to make changes in the positioner. Most positioners have various characteristic curves (often called ‘cam curves’) in them to do this, but unfortunately this one did not have a suitable curve for this valve. It was felt in this case that the valve supplier was responsible for supplying the valve with incorrect characteristics, and it was up to them to supply a correct valve.

This would take some time and it was important to get the control working as well as possible in the meantime. One way to overcome the problem is to incorporate a secondary flow control loop to get the flow to the correct value as demanded by the primary pH controller. A properly tuned flow control is extremely fast and operates in a few seconds so if one tunes it to control at the highest process gain, then even when the process gain is very much smaller, and the flow control gets much more sluggish, the flow control will still be able to get the flow to setpoint within a very short time as compared to the response time of the pH process. Thus the non-linearity is completely taken out of the primary pH loop.

I am a great proponent for cascade control when used in the right applications and have had marvellous results with it, as in this case we immediately got good control after the cascade was implemented.

Michael Brown is a specialist in control loop optimisation with many years of experience in process control instrumentation. His main activities are consulting, and teaching practical control loop analysis and optimisation. He gives training courses which can be held in clients’ plants, where students can have the added benefit of practising on live loops. His work takes him to plants all over South Africa and also to other countries. He can be contacted at Michael Brown Control Engineering cc, +27(0)82 440 7790, [email protected], www.controlloop.co.za



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Connecting every transport node
RJ Connect Editor's Choice Data Acquisition & Telemetry
Stockholm's bus system strategically links urban mainline, suburban mainline, non-mainline routes, community service buses and night buses. To acquire and process data from multiple sources and analyse onboard information on their moving buses, Transdev sought a dependable and powerful onboard computer. It teamed up with CatAB, Moxa’s local representative, known for delivering top-notch industrial data communication boards and equipment since 1988.

Read more...
Local range of planetary units
SEW-EURODRIVE Editor's Choice Motion Control & Drives
As SEW-EURODRIVE South Africa actively extends its offerings to customers, the SEW PPK and SEW P2.e industrial gearbox ranges are good examples of solutions that are well suited to the local business environment.

Read more...
Case History 195: Unstable reboiler steam flow
Michael Brown Control Engineering Editor's Choice
A high-pressure steam flow control in a reboiler on a column in a petrochemical refinery continually cycled when placed in automatic. Several attempts had been made to tune the controller, but these had been unsuccessful.

Read more...
Open control system for retrofit of conveyor control system
Beckhoff Automation Editor's Choice
For every online retailer, warehouse logistics is part of the critical infrastructure. An Australian office equipment supplier has retrofitted the warehouse logistics installation of its central warehouse, and replaced the proprietary decentralised controllers of the conveyor lines with PC-based control from Beckhoff, based on powerful EtherCAT communication.

Read more...
Digital industrial platforms and why they are important
Editor's Choice
One of the most significant trends driving digital transformation is the emergence of digital industrial platforms. This article will briefly explore what digital industrial platforms are, why they are important, and how they might shape the future of industrial automation.

Read more...
Celebrating 65 years: rebuilding and redefining its legacy
Editor's Choice News
Founded in 1959 by Neill Simpson, Axiom Hydraulics has grown into one of South Africa’s elite hydraulic companies. Over the past six and a half decades they’ve weathered many challenges, but none as devastating as the fire of 2023.

Read more...
Young robotics team takes world title
igus Editor's Choice News
In an inspiring demonstration of innovation and teamwork, Texpand, a young South African robotics team, recently made history by winning the 2024 FIRST Tech Challenge World Championships.

Read more...
SAIMC: It’s not black and white
SAIMC Editor's Choice SAIMC
Grey imports are a problem worldwide, not least in the automation industry in South Africa. The Supplier Advisory Council (SAC) operates under the umbrella of SAIMC, and is tackling this problem head-on.

Read more...
Loop signature 25: Tuning part 3 - Results of tuning a particular simple self-regulating process by several different methods.
Michael Brown Control Engineering Editor's Choice
A couple of SWAG methods of tuning were given in the previous Loop Signature article. I have tuned a simple self-regulating process using those methods, and two other tuning methods, one of them being the sophisticated Protuner tuning package, which is the system I employ. The tests were performed on a very accurate and powerful simulation package, and the results are compared below.

Read more...
PC-based control for advanced hydrogen storage technology
Beckhoff Automation Editor's Choice PLCs, DCSs & Controllers
The proportion of renewable energies from solar, wind and water is rising continuously. However, sufficient storage options are of the essence to use these energies as efficiently as possible. GKN Hydrogen offers a particularly compact and safe option, low-pressure metal hydride hydrogen storage systems with PC-based control from Beckhoff.

Read more...