Editor's Choice


Loop Signatures 1: Introduction to the Loop Problem Signatures series

May 2020 Editor's Choice

Over the years I have had many requests to write a book giving more detailed explanations of some of the problems I have encountered in my work on practical loop optimisation. I am by nature and inclination an engineer and not a writer, and so have shied away from such a formidable task. Also the publishers of my articles have informed me that they believe that the book would cost more to produce than it would earn, as there is a relatively limited market for such a work. I also believe that people learn far more, and even more importantly, would gain much better understanding of the subject by actually attending my courses where things are demonstrated by doing exercises on a powerful simulation package, rather than trying to read it up in a book. However some past delegates have not had the time and/or opportunity to practice what they learnt and soon forgot much of the course. Many of them have also requested me to put out a book.

To try and meet these requests in a different way, I intend to publish some of the information dealt with in my courses in this series of Loop articles. Initially the articles will only deal with some of the basics concerning problems and faults commonly encountered in feedback control loops. They will be published under the general heading of ‘Loop Signatures’. It should be noted that many of the things that will appear in these articles may have appeared and been discussed in previous Case History articles dealing with loops in various plants, but the approach here will be to systematically categorise the problems in a more logical approach.

A review of basic terminology

To kick off the series and to avoid having to redefine terminology every time, I will deal with some basic fundamentals about the feedback loop in this article, and also establish the terminology and names that will be used throughout the series. It is therefore advised to keep this for future reference.

At the outset it should be noted that there are no universal standards and definitions when it comes to industrial instrumentation and control. The industry has been largely led by the large manufacturers, who generally use their own terminology and definitions. In fact, many of them publish the definitions of all the terms they use in their specifications. Thus it is really important that users are aware of this as one manufacturer may have a different definition of a common term (such as the term ‘accuracy’ for example), to another manufacturer. It is really a case of ‘let the buyer beware’.

You will therefore appreciate that the terms and names that will be used in these articles may, and most probably will, not be the same as those that your instrument manufacturer uses, or which you yourself are familiar with.

Figure 1.

Figure 1 shows a simple feedback control loop. The loop consists of:

• A measuring device with associated transmitter that converts the signal to a 4-20 mA or digital signal, which is suitable for transmission back to the control room.

• A final control element, which is often simply called the ‘valve’, even though in actuality it could be any one of a numerous range of devices including dampers, variable speed drives (typically powering pumps, fans or belts, louvers, governors and heating appliances), or an actual control valve. Although not shown in the figure, the final control element may, and often does, include a current-to-pneumatic (I/P) converter, and a valve positioner.

• A controller.

• Finally, the process itself forms an integral and important component of the loop.

From the control point of view, however, the process consists of everything external to the controller including the measuring device, transmitter, valve, piping, etc. This is shown in Figure 1 as the ‘process boundary’.

The signal from the transmitter to the controller will be referred to as the ‘process variable’ (PV), and the signal from the controller to the final control element as the ‘process demand’ (PD). It should be noted that the PV, which is one of the input signals to the controller, represents what is happening on the output of the process, whilst the PD, which is the output signal from the controller, represents what is happening on the input to the process. This sometimes confuses people, but it will be clear once you realise that the controller is effectively in parallel with the process.

The controller itself, in its simplest form, has two inputs. One is called the ‘setpoint’ (SP), which is the value at which you would like to control the process, and the other is the PV which is the actual value of the process. The controller’s operation will be discussed in detail in future articles. For the present, it is important to know that as a general rule, the first thing that a controller does is to subtract the one signal from the other, i.e., SP – PV, this difference will be called the ‘error’.

If a process is on setpoint, and is stable, and an error then arises, it will be because either the setpoint, or the PV has changed. The former is referred to as a ‘setpoint change’ and the latter as a ‘load change’. Load changes are normally caused by external factors that affect the process.

Calculating the error

Again in very general terms, in most control loops, the purpose of the controller is to try and keep the error to an absolute minimum. Therefore, the best method to determine the effectiveness of a control loop is to calculate the error over a period of time. This will be referred to as ‘control variance’. In reality there are many ways of calculating control variance. For example, one could integrate the error over a period of time (say one 8-hour shift). However, probably the most commonly used modern method is the use of statistical calculations. The error is sampled at regular intervals (commonly at the controller scan rate). The samples are then statistically analysed at longer intervals. The statistical standard deviation gives a good representation of the variance, and is a practice commonly employed in paper manufacture where ‘2 x Standard Deviation’ (commonly referred to as ‘2 x Sigma’), is used as a measure of the effectiveness of the moisture and basis weight controls on each roll of paper.

Open and closed loop control

When operators make changes in manual, they adjust the PD directly, as can be seen in Figure 2.


Figure 2.

When working in automatic, the controller looks at the error signal, and then solves a mathematical equation. The result of the calculation sets the magnitude of the PD signal. The valve then moves to the position as dictated by the PD, which adjusts the amount of whatever is going into the process. The process then reacts accordingly, which in turn changes the value of the PV. This changes the error, and the controller will then recalculate the PD, and so on. Thus this sequence is effectively going round and round the loop on a regular basis, depending on how often the controller does its calculation, which on most modern controllers is once per second.


Figure 2.

As can be seen in Figure 3, if the control system works efficiently, it would obviously be much easier for the operator to set the desired value of the setpoint on the controller, and let the controller perform all the work of getting the PV to the right value, and keeping it there, rather than for him (or her) having to do it all manually. Unfortunately it is a very sad fact of life that due to the almost complete lack of training (and hence understanding), of field practical control, the vast majority of loops are set up so badly that operators generally make most changes in manual rather than in automatic. In fact, they usually only leave controllers in automatic when the plant is running under steady state, where of course, the controllers are generally doing very little.

Control in automatic is often referred to as ‘closed loop control’ and manual as ‘open loop control’.

Test equipment

It should be noted that to optimise control loops, one must use, at the very minimum, a high-speed, high-resolution, multi-channel recorder. A proper loop analyser like the Protuner, which is specifically designed for optimisation work, makes the task much easier. It should be noted that the ‘tools’ provided on control equipment like DCS and scada systems is generally completely inadequate for optimisation, particularly for fast processes.

The recorder, or analyser, is connected to the process across the controller’s input and output (PV and PD signals). Most tests are performed by making changes on the controller either in automatic (closed loop tests), or in manual (open loop tests).

The next article will deal with the two ‘classes of processes’ essential to understand practical process control.


Michael Brown.

Michael Brown is a specialist in control loop optimisation with many years of experience in process control instrumentation. His main activities are consulting, and teaching practical control loop analysis and optimisation. He gives training courses which can be held in clients’ plants, where students can have the added benefit of practising on live loops. His work takes him to plants all over South Africa and also to other countries. He can be contacted at Michael Brown Control Engineering cc, +27 82 440 7790, [email protected], www.controlloop.co.za


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

STEMulator – a gift to the youth of the nation
Editor's Choice News
STEMulator is a groundbreaking virtual platform designed to ignite the spark of curiosity in young minds and stimulate their interest in STEM subjects.

Read more...
Innovate, accelerate, dominate
Festo South Africa Editor's Choice Pneumatics & Hydraulics
Festo’s latest innovations, revealed through the Ramp Up Campaign, offer a blueprint for performance excellence, using the anatomy of a race car as an analogy to simplify and powerfully communicate how their technologies address industry challenges.

Read more...
Case History 198: Cascade control overcomes valve problems.
Editor's Choice Flow Measurement & Control
There are many processes where it is undesirable for the load to suddenly change quickly, for example in the paper industry. Examples of level control have involved reasonably fast tuning. An example of a level loop tuned this way and responding to a step change in setpoint is given.

Read more...
Advanced telemetry solutions
Editor's Choice Industrial Wireless
Namibia is one of the driest countries in sub-Saharan Africa, with an average annual rainfall below 250 mm. To address this challenge, the Namibia Water Corporation has employed one of southern Africa’s most powerful and well-proven telemetry solutions, designed and manufactured by SSE/Interlynx-SA.

Read more...
Navigating the future of intralogistics
LAPP Southern Africa Editor's Choice
In the rapidly evolving landscape of global markets, the demand for agility, efficiency and scalability in intralogistics has never been more critical. At LAPP Southern Africa, we stand at the forefront of this transformation, offering cutting-edge connection solutions tailored to the dynamic needs of intralogistics.

Read more...
Cutting-edge robotics and smart manufacturing solutions
Yaskawa Southern Africa Editor's Choice
Yaskawa Southern Africa made a compelling impact at this year’s Africa Automation and Technology Fair.

Read more...
A cure for measurement headaches in contract manufacturing
VEGA Controls SA Editor's Choice
A contract manufacturing organisation provides support to pharmaceutical and biotechnology companies in the manufacturing of medications, formulations and substances. VEGA’s measurement solutions offer accuracy and reliability for monitoring levels and pressures during the manufacturing process.

Read more...
PC-based control for a food capsule and pod packaging machine
Beckhoff Automation Editor's Choice
For TME, a machine builder specialising in the packaging of powdered foods, Beckhoff’s PC-based control technology offers unlimited opportunities when it comes to performance and innovative capacity in terms of flexibility, scalability and openness.

Read more...
Case History 198: Cascade control overcomes valve problems
Michael Brown Control Engineering Fieldbus & Industrial Networking
A large petrochemical refinery asked me to perform an audit on several critical base layer control loops. This article deals with a problem found on a valve controlling the flow of fuel to a heat exchanger.

Read more...
Simple and efficient level measurement in the mining, minerals and metals industries
Endress+Hauser South Africa Editor's Choice Level Measurement & Control
Measuring devices in the mining, minerals and metals industries face the challenge of varying material states and long distances in measurement height. Endress+Hauser’s answer to these challenges is the new Micropilot family.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved