Level Measurement & Control


Density-compensated multivariable level transmitter

February 2018 Level Measurement & Control

The traditional approach has been to use a conventional differential pressure (DP) transmitter with external water-filled ‘wet’ legs connecting both the high and low pressure sides of the transmitter to the drum. A pressure transmitter is also used to measure the steam pressure in the drum. The use of DP transmitters for drum level is ideal because of their low cost, ease of installation and high reliability. However, the output of a conventional DP transmitter in this application will have inaccuracies caused by changes in static pressure, the densities of the water in each leg, and the densities of the steam and water in the drum. Although water is normally thought of as an incompressible fluid, high pressure causes density changes independent of those created by temperature variations.

Foxboro’s solution

The Foxboro IMV31 density-compensated level transmitter provides a new approach to drum level measurement. While maintaining all the advantages of DP transmitters, it uses multiple measurements and onboard level calculations to provide a more accurate measurement. This eliminates the need to make similar level calculations in the control system. The IMV31 is based on Foxboro’s proven multivariable transmitter technology, which was originally developed for flow measurement.

The heart of the IMV31 is its ability to conduct onboard level calculations based on multiple measurements and fluid density calculations. The IMV31 transmitter has a pressure sensor and a differential pressure sensor, as well as two internal temperature sensors. It also has the ability to power and monitor an external RTD temperature sensor.

The instrument calculates four unique fluid densities, based on measured pressures and temperatures and uses this information along with the DP measurement to calculate an accurate density-compensated drum level. The densities of the water and steam are separately calculated, based on the pressure measurement and drum temperature. Although there is an RTD input, the transmitter can be configured to use the saturation temperature corresponding to the measured drum pressure in the calculation of water and steam densities. The densities of the water in each external wet leg are similarly calculated based on the measured pressure and temperatures.

Because the transmitter measures pressure and differential pressure, it has the unique ability to self-compensate for static pressure effects on the DP measurement, a feature not available on conventional DP transmitters.

IMV31 results

Regardless of the size of the drum and the saturation pressure, the IMV31 significantly improves the accuracy of drum level measurement over conventional DP transmitters and automatically provides dynamic compensation for varying pressures and temperatures.

The following two examples show the diversity and results that can be achieved:

Application 1

A 20 bar boiler with an 800 mm drum (-400 to +400) where level is measured from the midpoint of the range (0 mm) down to -400 mm or up to +400 mm. Using a conventional DP transmitter without density compensation, the following errors can be expected during critical start-up conditions when the drum pressure is at 3,5 bar:

• At -400 mm, the indicated level would be 6 mm high (0,84% of span).

• At 0 mm, the indicated level would be 30 mm low (3,7% of span).

• At +400 mm, the indicated level would be 30 mm low (8,2% of span).

The density-compensated IMV31 can reduce these errors to ±0,3% of span or less than ±2,5 mm

Application 2

A 70 bar boiler with a 1500 mm drum (-750 to +750) where level is measured from the midpoint of the range (0 mm) down to -750 mm or up to +750 mm. Using a conventional DP transmitter without density compensation, the following errors can be expected during critical start-up conditions when the drum pressure is at 6,9 bar:

• At -750 mm, the indicated level would be 50 mm high (3,3% of span).

• At 0 mm, the indicated level would be 110 mm low (7,3% of span).

• At +750 mm, the indicated level would be 275 mm low (17,9% of span).

The density-compensated IMV31 can reduce these errors to ±0,3% of span or less than ±5 mm.

The benefits include:

• Accurate level measurement of ±0,3% of maximum level.

• Increased reliability due to fewer transmitters and related equipment.

• Reduced cost of equipment, installation, and wiring.

• Improved process integrity from fewer field devices and connections.

Business value

Regardless of the size of the drum and the saturation pressure, the IMV31 multivariable transmitter significantly improves the accuracy of drum level measurement over conventional DP transmitters and automatically provides dynamic compensation for varying pressures and temperatures.

For more information contact Paulo de Sousa Gomes, EOH, +27 (0)87 803 9779, [email protected], www.eoh-pas.co.za



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

A fresh approach to dairy processing
VEGA Controls SA Level Measurement & Control
Ensuring the quality and safety of milk throughout the production process is of the utmost importance in the dairy industry. The VEGABAR pressure transmitters are suitable for hygienic applications. They are an asset in the dairy industry and have been used with success for measuring the milk level and the process pressure in storage tanks.

Read more...
A new era in radiometric level and density measurement
Mecosa Level Measurement & Control
The LoopSeries LB 430 radiometric detector from Berthold Technologies has a revolutionary power solution and sets new standards in level and density measurement.

Read more...
Level measurement of an acid dosing tank at a WWTP
Level Measurement & Control
Ferric chloride and other acids are essential chemical substances in water and wastewater treatment. To control the dosing of acid solutions, an Australian wastewater treatment plant uses a special container to store, mix and add these chemicals. The company opted in favour of KROHNE’s OPTIWAVE 1540 radar level transmitter

Read more...
Level measurement of leachate from sewage sludge humification
Level Measurement & Control
A municipal utility in eastern Germany operates a state-of-the-art wastewater treatment plant with sustainable sludge treatment. The ultrasonic signal was being partially deflected by the wind, leading to frequent false measurements and inefficient process workflows. The problem was solved by replaced the ultrasonic level sensor with KROHNE’s OPTIWAVE 1540 non-contact radar.

Read more...
Groundbreaking measurement system
Mecosa Level Measurement & Control
Berthold Technologies has launched the LoopSeries LB 430, an innovative, industry-leading measurement system designed to enhance operational efficiency with advanced level, density, and level switch capabilities.

Read more...
Level measurement of a water sump at a sewage treatment plant
Level Measurement & Control
A major city council in South East Queensland, Australia maintains and operates a wastewater treatment plant (WWTP) for municipal, industrial and agricultural wastewater. Due to the risk of flooding, the water sump must be continuously monitored. The solution is KROHNE’s OPTIWAVE 1540 radar level transmitter.

Read more...
Simplicity in measurement
Endress+Hauser South Africa Level Measurement & Control
Endress+Hauser’s new 80 GHz compact radar range is designed to help customers reach their compliance targets through simple yet efficient measurement solutions.

Read more...
Case History 196: Unstable condensate level control.
Michael Brown Control Engineering Editor's Choice Level Measurement & Control
The operators in a petrochemical refinery were having great trouble in trying to stabilise the condensate level in a vessel, and this was adversely affecting other loops downstream. Several unsuccessful attempts had been made to retune the controller.

Read more...
Non-contact level measurement for hygienic and industrial applications
ifm - South Africa Level Measurement & Control
The LW2720 radar level sensor from ifm sets new benchmarks for speed and accuracy.

Read more...
Level measurement in oil storage
VEGA Controls SA Level Measurement & Control
Measuring the level of crude oil in storage is essential for safe and efficient operations. VEGA offers solutions that effectively address the challenges, ensuring precise and consistent level measurements in crude oil storage facilities. VEGA’s sensors offer reliable data on the volume, level and pressure of all types of media. Accurate level measurement is complicated by crude oil thermal expansion properties, particularly in lighter oil grades.

Read more...