Fieldbus & Industrial Networking


Automotive electronics

January 2018 Fieldbus & Industrial Networking

Digital sensors return a discrete value of 0 or 1 to a controller. The controller, usually connected to I/O systems over a fieldbus, reads out the bus system data in a set cycle, commonly clocked in the millisecond range. Important to note here is that the bus system needs a degree of determinism and the controller must run in synchronisation with it, even if bus cycles are sometimes longer or shorter. With Beckhoff hardware and software, the synchronisation between controller and bus system are assured, as are the deterministic features of the ultra-fast EtherCAT communication system. This means that PC-based control provides the ideal foundation on which to implement oversampling technology.

Bus cycle subdivision with oversampling

Oversampling involves polling signals at a configurable multiple of the bus cycle time (i.e. in micro cycles) and writing the results to a temporary buffer. The set of process data collected is then transferred during the next bus cycle. Oversampling functionality can avoid situations like the following during signal polling: If, for example, a sensor is queried every 10 ms, only the data available at the precise time of the query is actually acquired. The controller is effectively blind from one query to the next, so details of any changes in the sensor’s state occurring between PLC queries are not recorded. For instance, a sensor’s state might switch from 0 to 1 and stay there for 9.9 ms. If it then reverts to 0, the sensor signal – from the perspective of the controller reading it out – will appear not to have changed at all over the 10 ms cycle.

Situations like this can be detected by using an EtherCAT oversampling input terminal such as the EL1262 to connect the sensor. This terminal is able to subdivide the bus cycle into as many as 1000 micro cycles. In the case of a 10 ms bus cycle, an oversampling factor of 1000 translates into a sampling interval of 10 µs. In a 1 ms bus cycle, a sampling interval of just 1 μs can be achieved, which is the shortest that EtherCAT oversampling terminals can currently support. This technology is ideal for reading out SENT sensors.

The pulse width encoding protocol: SENT

Single Edge Nibble Transmission (SENT) is a simple, unidirectional, asynchronous protocol that encodes sensor data based on the time between falling edges in a digital signal.

The pulse length describes the signal value transmitted. A single bit in the SENT protocol generally corresponds to 3 μs, which meets the minimum requirement in terms of sampling precision. The signal level is 5 V. The EL1262-0050 oversampling terminal meets both requirements in that it supports precise data acquisition down to 1 μs and is capable of processing the signal level directly. It can sample each bit of the SENT signal three times – more than enough to read the data transmitted in a signal pulse.

The data sets acquired are then processed in a ready-made function block, which evaluates the pulse lengths recorded, calculates the checksums and then marks the value either as valid or invalid.

The SENT protocol is mainly used for communication between sensors and electronic control units in vehicle electronics. Due to the simplicity of the protocol, the microcontrollers in ECUs are capable of evaluating it. SENT protocol receivers are not available for use in constructing measurement and test benches, but the open Beckhoff control system offers an alternative: The EL9505 power supply terminal can serve as the required 5 V power source, and the EL1262-0050 variant of the EtherCAT digital input terminal can be used to capture the sensor signal. In this way, SENT sensors can be directly and easily connected to the open and modular control platform from Beckhoff. This means that test benches equipped with Beckhoff technology can be used to conduct quality inspections on, say, throttle valve or steering torque sensors and make any necessary adjustments before the sensors are fitted to a vehicle.



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Integrating fire alarm systems into building management systems
Beckhoff Automation Fieldbus & Industrial Networking
Fire alarm systems work independently of the building automation system. Schrack Seconet has developed a flexible gateway using ultra-compact industrial PCs and TwinCAT from Beckhoff, which can be used to flexibly convert a customer-specific communication protocol to a wide range of transmission standards.

Read more...
Industrial PC for high demand on 3D graphics or deeply integrated vision
Beckhoff Automation Industrial Computer Hardware
Beckhoff Automation’s C6043 industrial PC with NVIDIA GPU handles applications with high demands on 3D graphics or deeply integrated vision and AI program blocks with minimal cycle times.

Read more...
Premium unmanaged industrial switch
Vepac Electronics Fieldbus & Industrial Networking
Premium unmanaged industrial switch for long-distance, noise-free fibre connectivity

Read more...
Open control technology reduces energy consumption and carbon footprint.
Beckhoff Automation IT in Manufacturing
The Swedish company Airwatergreen AB is breaking new ground in the dehumidification of air in industrial buildings and warehouses. PC-based control from Beckhoff regulates the innovative process.

Read more...
Fire and gas suppression solutions for mission-critical industries
Fieldbus & Industrial Networking
By representing world-leading brands and focusing on fully integrated, certified systems, HMA South Africa is positioning itself as a trusted partner in fire detection, suppression and explosion-proof safety solutions across the continent.

Read more...
The future of manufacturing
Fieldbus & Industrial Networking
Industrial automation is evolving at an unprecedented pace. At the forefront of this transformation is the Siemens SIMATIC ET 200SP HA Distributed I/O system. This is a flexible and scalable distributed I/O system for modern signal transfer from the field to the control level.

Read more...
Time-sensitive networking
RJ Connect Editor's Choice Fieldbus & Industrial Networking
In this article, we will explore what is driving the rise of time-sensitive networking, how it is reshaping industrial efficiency, the challenges when deploying this technology, and ways to tackle these challenges.

Read more...
Loop Signature 30: Nonlinearity in control loops (Part 1)
Michael Brown Control Engineering Editor's Choice Fieldbus & Industrial Networking
If nonlinearity occurs it means that if one is to carry on controlling with the same response to changes in load or setpoint, then the tuning of the controller will also need to be adjusted to meet the new conditions.

Read more...
PC-based control regulates innovative dehumidifiers
Beckhoff Automation Fieldbus & Industrial Networking
Swedish company, Airwatergreen is breaking new ground in the dehumidification of air in industrial buildings and warehouses. The patented CVP technology reduces energy requirements and ensures an indoor climate that prevents corrosion and mould growth. PC-based control from Beckhoff regulates this innovative process.

Read more...
Ethernet connectivity for embedded systems
Fieldbus & Industrial Networking
Delivering Ethernet connectivity for embedded systems, XPort ETH Click is a compact add-on board from MIKROE, the embedded solutions company that dramatically cuts development time by providing innovative hardware and software products based on proven standards.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved