The time-of-flight (TOF) operating principle is fast gaining acceptance in diverse level measurement applications, as a result of several clear advantages over traditional methods. TOF instruments are not negatively affected by process conditions like high temperature, vacuum, changing and extreme pressure, agitation and turbulent surfaces.
They are also virtually maintenance-free, suitable for applications where probes would interfere with an agitator, eliminate the need for shut-off valves and related leaks by being top-mounted, are flexible and cost-effective and can be dry-calibrated in a workshop removed from the actual process. TOF systems require no verification procedures.
There are several choices available in TOF technology. Based on the measurement of time between the generation of a short electronic signal and its return following reflection from the process material back to the device, TOF is the operating principle for instruments using ultrasonic, radar and TDR (time domain reflectometry) technologies.
TOF: The time taken for the echo to return from the surface of the medium determines the distance between level gauge and surface. Interference echoes return from fixed objects in the path of the beam. Floating averaging (inset) minimises the noise in the returned signal, permitting improved measurement sensitivity with reduced signal power levels, or when measuring with mediums that are poorer reflectors of the transmitted signal
Except in the case of TDR technology, TOF systems require no probe or sensor to be in direct contact with process material. This is particularly useful in applications where chemical compatibility, abrasion, sensor build-up and application of mechanical stress by material movement are involved. In processes where excessive particle distribution (dust in silos) can cause interference, TDR provides the benefit of a wave-guide to direct the signal.
One of the reasons for instrumentation specialist Endress+Hauser's enthusiasm over TOF is the increasing demand for predictive maintenance in processes worldwide. TOF devices monitor build-up on sensors in order to be able to trigger an alarm when it reaches a critical point. Similarly, by monitoring the maximum temperature that a device is exposed to, overheated sensors can be exchanged before failure occurs, reducing downtime and maintenance costs.
Cost in itself is another factor in support of TOF technology. A major European chemical company compared a differential pressure transmitter and a radar transmitter by calculating the average cost for maintenance and repair. The results showed an annual saving per device of US$880. Like all other technologies, TOF systems have limitations. TOF sensor cleaning becomes an issue when sanitary requirements come into play, as contamination of new product through residue on the sensor must be avoided. In many cases, cleaning can be done through a preventative maintenance schedule.
When installing TOF devices, one must be mindful that all free-space systems (ultrasonic and radar) need an unobstructed line-of-sight. Turbulent surfaces caused by agitation, aeration, boiling, or simply filling, will also cause a reduction in signal return for all free-space systems. Such conditions can be accounted for by selecting a sensor one size bigger than that which would have been required under calm conditions.
To complete its attractive offering, modern TOF devices include features such as error and status messages, signal curve display methods and simulation modes that make troubleshooting quite easy. Endress+Hauser will continue to drive the development of these systems and devices to become more user-friendly and cost-effective, as it is clearly the technology of choice for most modern level measurement applications.
WirelessHART solutions Endress+Hauser South Africa
Industrial Wireless
By combining its innovative product portfolio with a deep application and industry knowledge, Endress+Hauser enables its customers to optimise their processes, boost productivity, and ensure their safety and environmental compliance.
Read more...Endress+Hauser celebrates 40 years Endress+Hauser South Africa
News
Endress+Hauser South Africa was joined on its stand at Electra Mining Africa by valued customers, representatives, colleagues and industry friends for a spectacular cake cutting ceremony to celebrate 40 marvellous years in southern Africa.
Read more...Endress+Hauser celebrates 40 years Endress+Hauser South Africa
News
Endress+Hauser South Africa was joined on its stand at Electra Mining Africa by valued customers, representatives, colleagues and industry friends for a spectacular cake-cutting ceremony to celebrate 40 marvellous years in southern Africa.
Read more...Process technology: SICK and Endress+Hauser sign strategic partnership Endress+Hauser South Africa
News
German sensor company SICK and the Swiss measurement and automation technology specialist Endress+Hauser have agreed on a strategic partnership. Endress+Hauser will take over worldwide sales and service of SICK’s process analysis and gas flow measurement technology, with a joint venture to be established for their production and further development.
Read more...Sensor technology for brewing Endress+Hauser South Africa
Analytical Instrumentation & Environmental Monitoring
Brewing is a delicate balance, blending tradition with innovation. Now, modern sensor technology is stepping in to perfect the art of fermentation.
Read more...Level measurement in oil storage VEGA Controls SA
Level Measurement & Control
Measuring the level of crude oil in storage is essential for safe and efficient operations. VEGA offers solutions that effectively address the challenges, ensuring precise and consistent level measurements in crude oil storage facilities. VEGA’s sensors offer reliable data on the volume, level and pressure of all types of media. Accurate level measurement is complicated by crude oil thermal expansion properties, particularly in lighter oil grades.
Read more...Cloud-based inventory management Endress+Hauser South Africa
Level Measurement & Control
Netilion is an award-winning cloud-based IIoT ecosystem designed for industrial processes. It connects the physical and digital worlds to send valuable information from the field straight to your phone, tablet or other device.
Read more...Technology for water sustainability Endress+Hauser South Africa
Analytical Instrumentation & Environmental Monitoring
The sustainability of surface water is critical for South Africa’s economic development, social well-being and environmental health. Endress+Hauser has a full range of liquid analysis sensors and transmitters to measure important parameters and has an excellent global track record in water and wastewater process plants and various surface and industrial water monitoring sites.
Read more...Optimise sludge treatment and reduce operational costs Endress+Hauser South Africa
Flow Measurement & Control
The Endress+Hauser inline measuring devices, the Proline Teqwave MW 300 and the Proline Teqwave MW 500, determine the total solids content of wastewater directly through microwave transmission.
Read more...Optimising steam management for boiler efficiency Endress+Hauser South Africa
Temperature Measurement
Endress+Hauser understands the daily challenges and demands placed on energy and utility managers across the spectrum of steam generation, distribution and consumption activities. Its global team is committed to working with its partners to overcome these complexities, and particularly those that aim for a safe, economic and sustainable sitsce of steam energy production and delivery.