Industrial Wireless


Yokogawa launches next-generation field wireless

Technews Industry Guide - Wireless 2015 Industrial Wireless

In 2010, Yokogawa launched its first wireless field products conforming to the ISA100.11a standard and today continues to spearhead the development of industrial wireless technologies.

Recently, the company released a new, large-scale, reliable, next-generation plant-wide field wireless system with the following key features:

• Reliability: reliable high-performance field wireless and redundant technologies.

• Flexibility: flexible architecture supporting the full range, from small to large-scale plants.

• Openness: open ISA100.11a standard allowing third-party field wireless devices to be connected.

Next-generation field wireless systems

Although most field wireless systems are currently installed in relatively small areas, demands are rising to increase the number of monitoring points, covering wider areas, and expanding to process control as well as diagnosis, monitoring and measurement. To respond to these demands, Yokogawa has developed a large-scale, reliable, next-generation plant-wide field wireless system, which can manage up to 500 wireless field devices.

Conventional small field wireless systems are mainly installed as additional monitoring tools in areas with a clear line-of-sight such as tank yards and wastewater treatment facilities. Such systems offer only limited advantages such as improved inventory management, reduced regular visual checking, automated environmental measurement, and reduced wiring costs. In contrast, plant-wide field wireless systems can cover both a large number of measuring points in a small area with a high density of production equipment, as well as the entire plant. This allows customers to set up wireless devices anywhere in their plants and manage data from those devices to improve plant-wide production efficiency.

Several products have been added to the architecture of the new field wireless system including:

• YFGW410 field wireless management station.

• YFGW510 field wireless access point.

• YFGW610 field wireless media converter.

In the new architecture, the YFGW510 serves as an access point and forms the wireless backbone network with the YFGW410 field wireless management station. Therefore, by installing multiple YFGW510 field wireless access points throughout the plant, wireless sub-networks can be built and then connected to each other to create a large-scale, plant-wide field wireless system. The YFGW510 and YFGW410 can communicate via Ethernet, optical Ethernet, wireless LAN, instrumentation cable communication, and so forth, allowing flexible installation in plants. Yokogawa’s YFGW710, the existing all-in-one type field wireless integrated gateway, combines all the functions of access points and wireless management, enabling small wireless systems to be easily installed.

Yokogawa’s field wireless has excellent receiving efficiency with high reliability of the wireless physical layer (Reliable Radio). The technology enables communication within a 600 metre radius, with a standard antenna if there are no obstacles.

Reliability

The reliability of the network layer is enhanced with the following new technologies:

Duocast

Duocast is a redundancy technology for the wireless path specified in the ISA100.11a standard. In the conventional mesh-topology network, if communication is not established in a path, data is then sent via another path. However, this may affect real-time performance because the data is not sent in the same time slot, but in a later time slot even in the same superframe.

Figure 1. Duocast can overcome failures of either access point as well as errors in a wireless path.
Figure 1. Duocast can overcome failures of either access point as well as errors in a wireless path.

Yokogawa’s Duocast technology simultaneously sends two sets of identical data in the same time slot, and provided either data is successfully transmitted, real-time performance is maintained. Therefore, Duocast is ideal for ensuring the redundancy of mission-critical wireless paths and helps improve reliability while securing low latency (see Figure 1).

Dual wireless backbone network

Figure 2. Redundant field wireless system.
Figure 2. Redundant field wireless system.

The network between the YFGW510 and YFGW410 is called a wireless backbone network. Its redundancy is specified by the ISA100.11a standard to improve the reliability of the network and is achieved by the redundant YFGW410 stations. Either of the dual YFGW410 stations can deal with disconnections and errors of the wireless backbone network, as well as malfunctions of the other YFGW410 stations. One station is set to active and the other to standby and these are connected together via a synchronous communication cable. If a fault is detected in the active YFGW410, the functions and data are quickly routed to the standby YFGW410 to seamlessly continue communication. (see Figure 2).

Further enhancements

The communication quality has been improved with the release of the detachable antenna type model. The extension cable and high-gain antenna can be used with this model. The placement of the antenna can be adjusted with the antenna extension cable without change to the installation of transmitters.

The battery life of the detachable antenna type model has been extended from 1,5 times to 2 times more for a product with low power consumption. The EJX B series wireless differential pressure/pressure transmitter battery will last 10 years with an update time of 30 seconds or five years with a 10 second update. Similarly, the YTA510 wireless temperature transmitter battery will last 10 years with an update time of 10 seconds and eight years with a 5 second update time.

Summary

The flexibility of wireless solutions enables less investment in infrastructure, while providing greater process insights into plant operations where the measurements were previously too difficult or uneconomical to implement. The ISA100.11a’s robust security mechanism provides continuous safety in various system operations.

For more information contact Christie Cronje, Yokogawa South Africa, +27 (0)11 831 6300, [email protected], www.yokogawa.com/za



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Compact UHF RFID reader with integrated Ethernet interface
Turck Banner Southern Africa Industrial Wireless
Online teaser: Turck Banner’s Q150 UHF RFID reader has an integrated Ethernet interface. The IP67 reader communicates directly with PC or PLC systems in industrial Ethernet networks having the four most important protocols, without the need for an additional interface.

Read more...
Keeping mine outstations connected
Omniflex Remote Monitoring Specialists Industrial Wireless
Remote monitoring specialist, Omniflex has helped wireless data communications systems firm, Scan RF implement site-wide monitoring systems at the 17 000-hectare Kolomela iron ore mine in South Africa.

Read more...
WirelessHART solutions
Endress+Hauser South Africa Industrial Wireless
By combining its innovative product portfolio with a deep application and industry knowledge, Endress+Hauser enables its customers to optimise their processes, boost productivity, and ensure their safety and environmental compliance.

Read more...
Versatile, powerful vector network analyser
Vepac Electronics Industrial Wireless
Vepac’s SNA6000A Series from Siglent provides instantaneous measurement results of parameters such as Q-factor, bandwidth and insertion loss, and also give insights into scattering, differential and time-domain measurements.

Read more...
Enhancing safety of service and maintenance teams
Industrial Wireless
The VKB Group, a leading agricultural enterprise, has taken a significant step in prioritising the safety of its service and maintenance teams by selecting SafeGauge, a wireless and digital measurement tool, for its service centre in Reitz.

Read more...
Simplify condition monitoring with one gateway
Turck Banner Southern Africa Industrial Wireless
By seamlessly integrating wired and wireless devices, Turck Banner’s DXM1200-X2 brings condition monitoring to every part of a facility: easy-to-access areas, hard-to-reach places, and everywhere in between, including harsh environments with an IP67-rated housing.

Read more...
Radar scanner for object detection and collision avoidance
Industrial Wireless
Online teaser: Many radar sensors for collision avoidance are limited to detecting the distance, and thus only output one dimension, as a measured value. Turck Banner’s new MR15-Q80 radar scanner delivers genuine 3D data, and thus significantly improves the mapping of objects and spaces, giving developers and system engineers a greater degree of freedom.

Read more...
RF-Link automation module
Industrial Wireless
The DICIO is an RF-Link automation module enabling the remote control of a corresponding module.

Read more...
Read/write head with system redundancy
Turck Banner Southern Africa Industrial Wireless
Turck Banner’s robust multiprotocol Ethernet read/write head adds an efficient solution to the existing RFID portfolio, with unique features in terms of startup time, communication and safety.

Read more...
Integrating collision prevention on mines
Industrial Wireless
While South Africa leads the world in regulating the field of collision prevention in mining, a key challenge in implementing effective solutions is to secure the buy-in and collaboration of all the people involved. At the recent Mining Indaba, Booyco Electronics CEO, Anton Lourens reminded delegates that the availability of world-class technology is just one aspect of the solution.

Read more...