Industrial Wireless


Faster space communication with record-sensitive receiver

January 2025 Industrial Wireless

In space exploration, long-distance optical links can now be used to transmit images, films and data from space probes to Earth using light. But in order for the signals to reach all the way and not be disturbed along the way, hypersensitive receivers and noise-free amplifiers are required. Researchers at Chalmers University of Technology in Sweden have now created a system with a silent amplifier and record-sensitive receiver that paves the way for faster and improved space communication.

Space communication systems are increasingly based on optical laser beams rather than radio waves, as the signal loss has been shown to be less when light is used to carry information over very long distances. But, even information carried by light loses its power during the journey, and optical systems for space communication therefore require extremely sensitive receivers capable of sensing signals that have been greatly weakened before they finally reach Earth. The Chalmers researchers’ concept for optical space communication opens up new communication opportunities and discoveries in space.

“We can demonstrate a new system for optical communication with a receiver that is more sensitive than has been demonstrated previously at high data rates. This means that you can get a faster and more error-free transfer of information over very long distances, for example when you want to send high-resolution images or videos from the Moon or Mars to Earth,” says Professor Peter Andrekson at Chalmers, and one of the lead authors of the study, which was recently published in the scientific journal, Optica.

Silent amplifier with simplified transmitter improves communication

The communication system uses an optical amplifier in the receiver that amplifies the signal with the least possible noise, so that its information can be recycled. Just like the glow of a flashlight, the light from the transmitter widens and weakens with distance. Without amplification, the signal is so weak after the space flight that it is drowned out by the electronic noise of the receiver.

After 20 years of struggling with disturbing noise that impaired the signals, the research team at Chalmers was able to demonstrate a noise-free optical amplifier a few years ago. But until now, the silent amplifier has not been able to be used practically in optical communication links, as it has placed completely new and significantly more complex demands on both transmitter and receiver.

Due to the limited resources and minimal space on board a space probe, it is important that the transmitter is as simple as possible. By allowing the receiver on Earth to generate two of the three light frequencies needed for noise-free amplification, and at the same time allowing the transmitter to generate only one frequency, the Chalmers researchers were able to implement the noise-free amplifier in an optical communication system for the first time.

The results show an outstanding sensitivity, while complexity at the transmitter is modest. “This phase-sensitive optical amplifier does not, in principle, generate any extra noise, which contributes to a more sensitive receiver, while error-free data transmission is achieved even when the power of the signal is lower. By generating two extra waves of different frequencies in the receiver, rather than as previously done in the transmitter, a conventional laser transmitter with one wave can now be used to implement the amplifier. Our simplification of the transmitter means that already existing optical transmitters on board satellites and probes could be used together with the noise-free amplifier in a receiver on Earth,” says Dr Rasmus Larsson, postdoctoral researcher in Photonics at Chalmers, and one of the lead authors of the study.

Can solve problematic bottleneck

This progress means that the silent amplifiers can eventually be used in practice in communication links between space and Earth. The system is thus poised to contribute to solving a well-known bottleneck problem among space agencies today.

“NASA talks about ‘the science return bottleneck’, and here the speed of the collection of scientific data from space to Earth is a factor that constitutes an obstacle in the chain. We believe that our system is an important step forward towards a practical solution that can resolve this bottleneck,” says Andrekson.

The next step for the researchers is to test the optical communication system with the implemented amplifier during field studies on Earth, and later also in communication links between a satellite and Earth.

For more information contact Rasmus Larsson, Chalmers University of Technology, [email protected], www.chalmers.se/en




Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Remote monitoring cathodic protection systems in mining
Industrial Wireless
Cathodic protection systems are widely used in mining operations, protecting anything from conveyor systems to settling tanks against corrosion. However, because of the dangerous nature of the environment in which they are based, managing these systems is not without its challenges. Omniflex explains how these can be addressed by implementing industry-certified remote monitoring systems.

Read more...
New toolset for Turck Automation Suite
Turck Banner Southern Africa Industrial Wireless
Turck is expanding its Turck Automation Suite IIoT and service software platform with the TAS Cloud industrial cloud service for remote maintenance and condition monitoring.

Read more...
Ensuring boiler safety and efficiency
Industrial Wireless
Control systems, together with remote monitoring systems, play a vital role in ensuring the safe and smooth operation of boilers. Although these systems operate independently, they combine to provide important technical and operational insights.

Read more...
Compact UHF RFID reader with integrated Ethernet interface
Turck Banner Southern Africa Industrial Wireless
Online teaser: Turck Banner’s Q150 UHF RFID reader has an integrated Ethernet interface. The IP67 reader communicates directly with PC or PLC systems in industrial Ethernet networks having the four most important protocols, without the need for an additional interface.

Read more...
Keeping mine outstations connected
Omniflex Remote Monitoring Specialists Industrial Wireless
Remote monitoring specialist, Omniflex has helped wireless data communications systems firm, Scan RF implement site-wide monitoring systems at the 17 000-hectare Kolomela iron ore mine in South Africa.

Read more...
WirelessHART solutions
Endress+Hauser South Africa Industrial Wireless
By combining its innovative product portfolio with a deep application and industry knowledge, Endress+Hauser enables its customers to optimise their processes, boost productivity, and ensure their safety and environmental compliance.

Read more...
Versatile, powerful vector network analyser
Vepac Electronics Industrial Wireless
Vepac’s SNA6000A Series from Siglent provides instantaneous measurement results of parameters such as Q-factor, bandwidth and insertion loss, and also give insights into scattering, differential and time-domain measurements.

Read more...
Enhancing safety of service and maintenance teams
Industrial Wireless
The VKB Group, a leading agricultural enterprise, has taken a significant step in prioritising the safety of its service and maintenance teams by selecting SafeGauge, a wireless and digital measurement tool, for its service centre in Reitz.

Read more...
Simplify condition monitoring with one gateway
Turck Banner Southern Africa Industrial Wireless
By seamlessly integrating wired and wireless devices, Turck Banner’s DXM1200-X2 brings condition monitoring to every part of a facility: easy-to-access areas, hard-to-reach places, and everywhere in between, including harsh environments with an IP67-rated housing.

Read more...
Radar scanner for object detection and collision avoidance
Industrial Wireless
Online teaser: Many radar sensors for collision avoidance are limited to detecting the distance, and thus only output one dimension, as a measured value. Turck Banner’s new MR15-Q80 radar scanner delivers genuine 3D data, and thus significantly improves the mapping of objects and spaces, giving developers and system engineers a greater degree of freedom.

Read more...