Editor's Choice


Case History 195: Unstable reboiler steam flow

November 2024 Editor's Choice

A high-pressure steam flow control in a reboiler on a column in a petrochemical refinery continually cycled when placed in automatic. Several attempts had been made to tune the controller, but these were unsuccessful. The operators had to control the flow manually, but had great difficulty in getting it to the desired flow value.

Some open and closed loop tests were performed on the flow, and they revealed some remarkable things. Figure 1 is a test, with the controller firstly being set in automatic (closed loop testing), with the ‘as-found’ tuning parameters in the controller, and a few small set point (SP) steps being made. Once that was done the controller was placed in manual (open loop testing) and some steps were made on the controller output (PD).

Observations made from the closed loop section of the test

• The loop was in a continuous cycle, which appeared to be caused by bad tuning. Although it is hard to see in the test due to the aliasing of the signals, caused by a relatively slow scan rate in the OPC data interchange system used to pick up the signals from the DCS, this could be confirmed by running a frequency analysis on the PV signal. This revealed that the period of the dominant frequency in the cycle was approximately 13 seconds. This is typical of the frequency of cycling caused by instability due to bad tuning for a flow loop. As a general note, such cycling generally occurs at a frequency close to the ultimate (or natural resonant) frequency of a closed loop flow control loop.

• The amplitude of the cycle on the PD was very much smaller than that of the process variable (PV). This would indicate a process gain much greater than unity. Process gain is the ratio of the change in PV over the change in PD. This would indicate a largely oversized valve.

• This is also confirmed by the fact that the average value of the PD in the cycle was around 7%, which assuming that the transmitter and valve calibrations were correct, meant that the valve was working far too close to seat. A well-established rule of thumb for most types of pneumatically operated valves is that under normal control conditions they should operate at or above 20% opening. There are two reasons why valves should not work close to the seat. Firstly, they may encounter excessive differential pressure, with which their actuators cannot cope; secondly, the manufacturers find it very difficult to machine the valve seats and/or plugs so that the correct inherent flow characteristics can be maintained, so installed nonlinear characteristics may be encountered at low flows.

Observations made from the open loop section of the test

• The installed characteristics of the valve are nonlinear, which is shown by several small equal steps in the PD being made, and the magnitude of PV increasing with each subsequent step.

• The PV jumps around at times when the PD is steady, which would indicate a possible slight play in the linkages between actuator and actual valve.

• The total change in the PV is about 10 times greater than that of the PV, which would indicate that the valve is possibly about 10 times oversized, confirming the observation made above in the closed loop section of the test.

Figure 2 shows a section of an open loop test made with a step made on the PD. The purpose was to try and establish tuning values that could possibly work. It is of interest that, in this step, the process gain was calculated to be a massive 34.

A closed loop test using the new tuning is shown in Figure 3. Interestingly, some sort of poor closed loop control was actually now being achieved. However, it can be seen that the PV again suddenly moved by itself at one point, probably due to play in linkages. It also showed that the PV apparently did not move properly on two of the SP step changes, and also apparently exhibited a lot of dead time as seen on the first large SP change downwards.

However, one must be reasonable. To get the PV to move, the PD has to move only a tiny amount, and this must be done quite slowly to avoid instability. The valve was actually doing quite a remarkable job, but it is absolutely ridiculous to try and get good control with such a massively oversized valve. There was no doubt that the valve needed replacing with a smaller one.

For the record, the original tuning was P = 0,15, and I = 0,7 minutes per repeat, whereas the new tuning was P = 0,01, and I = 0,09minutes per repeat. The original P gain was 15 times too large and resulted in the instability. Typically flow loops need tuning with a small gain and a fast integral. The original tuning is a good example of really bad ‘trial and error’ tuning.


About Michael Brown


Michael Brown

Michael Brown is a specialist in control loop optimisation, with many years of experience in process control instrumentation. His main activities are consulting and teaching practical control loop analysis and optimisation. He now presents courses and performs optimisation over the internet. His work has taken him to plants all over South Africa and also to other countries. He can be contacted at: Michael Brown Control Engineering CC, +27 82 440 7790


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Time-sensitive networking
RJ Connect Editor's Choice Fieldbus & Industrial Networking
In this article, we will explore what is driving the rise of time-sensitive networking, how it is reshaping industrial efficiency, the challenges when deploying this technology, and ways to tackle these challenges.

Read more...
Loop Signature 30: Nonlinearity in control loops (Part 1)
Michael Brown Control Engineering Editor's Choice Fieldbus & Industrial Networking
If nonlinearity occurs it means that if one is to carry on controlling with the same response to changes in load or setpoint, then the tuning of the controller will also need to be adjusted to meet the new conditions.

Read more...
Precision in paper processing
VEGA Controls SA Editor's Choice Level Measurement & Control
Paper manufacturing is a demanding process that relies on consistency, precision and control at every stage. The VEGABAR 82 pressure transmitter is well-suited to these harsh environments.

Read more...
Ensuring clean and safe water
Endress+Hauser South Africa Editor's Choice Analytical Instrumentation & Environmental Monitoring
Endress+Hauser’s comprehensive range of disinfection sensors is designed to monitor and control disinfectant levels in water treatment processes.

Read more...
A South African legacy in telemetry
Interlynx-SA Editor's Choice Industrial Wireless
Telemetry is becoming a vital component of industrial strategy, allowing companies to harness real-time data to optimise processes and reduce waste. One company leading this technological shift is Interlynx.

Read more...
Case History 199: Another example of the effectiveness of cascade control
Michael Brown Control Engineering Editor's Choice Fieldbus & Industrial Networking
In my last article I wrote about how cascade control systems can effectively overcome valve problems. This article gives another example of how a temperature control was able to perform well, in spite of really severe valve problems.

Read more...
Upgrading legacy automation
Omron Electronics Editor's Choice Fieldbus & Industrial Networking
Legacy automation is characterised by technology in the later stages of its useful life. As new automation technologies continue to emerge and interconnect at an exponential rate, failing to integrate these technologies can widen the gap between the competitive and the obsolete.

Read more...
Planetary gear units for high torque requirements
SEW-EURODRIVE Editor's Choice Motion Control & Drives
Packing a compact design, along with high torque and low-speed outputs, the new SEW PPK and SEW P2.e planetary gear units from SEW-EURODRIVE offer new capabilities in continuous heavy-duty applications where space is at a premium.

Read more...
These robots crawl into every nook and cranny
DNH Tradeserve t/a DNH Technologies Editor's Choice Motion Control & Drives
Inuktun's small crawler robot magnetically sticks to metal walls and is able to move in all directions. It carries cameras, sensors and tools for inspection or maintenance work in tight pipes and on the outer hulls of tanks or ships. All crawler modules and cameras are equipped with brushed DC motors from Swiss drive specialist, maxon using various motor-gearhead combinations.

Read more...
Swiss watchmaking meets hypercar power
Horne Technologies Editor's Choice
The display of Bugatti’s upcoming luxury model, Tourbillon will be something truly special. Instead of a digital version, the driver will see a genuine Swiss timepiece behind the steering wheel.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved