Editor's Choice


Case History 193: The big dipper.

I&C July 2024 Editor's Choice

This article gives an example of an important flow control system for flare gas in a petrochemical refinery. The control was suffering from serious problems, often cycling severely, and at other times the flow process variable (PV) would suddenly move quite a lot away from the setpoint (SP).

Figure 1 shows the ‘Closed Loop Test As Found’. This was a test where SP step changes were made with the controller in automatic, with the same tuning parameters that were in the controller when we started the tests.

This was a very interesting test. It showed that when the SP was stepped upwards in the valve opening direction, the tuning was in fact quite good, with quite a fast response, which was typical of a normal fast control of a flow process. However, once at SP, the flow would suddenly drop violently, sometimes by over 20%, and then after about five seconds would recover. From the controller output (PD) trace, it can be seen that the controller did not react very quickly to these swings. This would immediately lead one to suspect that there was a huge problem somewhere in the positioner or in the valve.

Another observation in the first part of the test where the SP changes were increasing was that the valve could be two or three times oversized. This was based on the ratio of the magnitudes of the step in PV to that of the PD. This ratio is referred to as process gain (PG).

On a self-regulating class of process, such as flow, one can consider a valve to be properly sized if the PG is unity. If it is greater than unity, then the valve may be oversized. If it is less than unity, it indicates that the transmitter range is too wide. Explanations on the science behind this are given in my Loop Signature series.

Now we come to the second part of the test, where the SP steps were in the opposite direction, reducing the flow, and the valve was moving in the closing direction. The behaviour of the process was now very different, with the flow not reacting in the same way as before. Instead, the process almost appeared to be cycling badly, with the PV frequently performing the same type of violent swings that were observed in the first part of the test.

The behaviour of the PD was also different. It appeared to be ramping down fairly slowly but with a fairly small, almost saw-tooth cycle superimposed on it. It no longer responded quickly to the SP steps. This could have meant that the valve was very sticky when closing.

Figure 2 is the recording made when we performed the Open Loop test. The controller was placed in manual, and the PD was stepped. Again, it was fascinating to see what the valve did.

The following could be observed on the steps of PD moving upwards:

• The PV responded quickly to the steps, but with a huge spiked overshoot of almost 40%.

• The PG on each of the steps was about 2, which indicated the valve was about two times oversized (which is in fact not terribly serious).

• The installed valve characteristics were linear, which was good. The PG was the same for each of the steps. If it had varied, it would have indicated non-linear installed valve characteristics, which could have caused control difficulties as loops were tuned for only one value of PG.

The steps of PD moving downwards showed a completely different story:

• The valve stuck many times after the PD had been stepped.

• It sometimes took several steps of the PD before the valve actually responded and did move the PV down. This confirmed the previous observation that the valve was very sticky when closing.

• The valve would frequently move down in big spikes and then back up.

• On one occasion, when the PD was stepped down the valve instead of closing, it actually opened for a few seconds before starting to move in the closing direction again.

The final conclusion, of course, is that the open loop test confirmed the observations made after the closed loop test, and there was a major problem occurring in the valve or positioner. This needed to be sorted out if good control was to be achieved.

I called this study ‘The Big Dipper’, as it reminded me of a ride in a fairground where you suddenly and violently go up and down. Once again, we have an excellent example of how important it is to analyse a loop’s behaviour properly before even thinking of tuning.


About Michael Brown


Michael Brown.

Michael Brown is a specialist in control loop optimisation, with many years of experience in process control instrumentation. His main activities are consulting and teaching practical control loop analysis and optimisation. He now presents courses and performs optimisation over the internet. His work has taken him to plants all over South Africa and also to other countries. He can be contacted at: Michael Brown Control Engineering CC, +27 82 440 7790.


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Loop signature: Tuning part 4 processes
Michael Brown Control Engineering Editor's Choice Fieldbus & Industrial Networking
The purpose of this particular article is to try and give those unfortunate enough to have to use SWAG (scientific wild ass guess) tuning a bit of an idea of how to go about it, and even more importantly some understanding of a couple of basic principles.

Read more...
EtherCAT and PC-based control elevate next-generation laser cutting machine
Beckhoff Automation Editor's Choice
Cincinnati Incorporated has been building sheet metal processing equipment for 125 years. Since the switch to PC-based control, the only limits to development have been physical.

Read more...
Ensure seamless integration and reliable performance with CANbus solutions
RJ Connect Editor's Choice Fieldbus & Industrial Networking
Modern industrial applications require robust and effective communication. The CANbus product range guarantees smooth integration and data transfers throughout systems.

Read more...
Connecting every transport node
RJ Connect Editor's Choice Data Acquisition & Telemetry
Stockholm's bus system strategically links urban mainline, suburban mainline, non-mainline routes, community service buses and night buses. To acquire and process data from multiple sources and analyse onboard information on their moving buses, Transdev sought a dependable and powerful onboard computer. It teamed up with CatAB, Moxa’s local representative, known for delivering top-notch industrial data communication boards and equipment since 1988.

Read more...
Local range of planetary units
SEW-EURODRIVE Editor's Choice Motion Control & Drives
As SEW-EURODRIVE South Africa actively extends its offerings to customers, the SEW PPK and SEW P2.e industrial gearbox ranges are good examples of solutions that are well suited to the local business environment.

Read more...
Digitalised recycling systems
ifm - South Africa Editor's Choice
The EREMA Group develops and produces plastics recycling systems. The approximately 7500 active plants worldwide have the capacity to produce more than 20 million tons of recycled granulate. With up to 80 vibration sensors per system, EREMA relies on sensor technology and IO-Link masters from ifm to control the manufacturing process.

Read more...
VEGA fights incorrect measurements
VEGA Controls SA Editor's Choice
VEGA’s 80  GHz radar sensors, with their 120 dB dynamic range, ensure full visibility in all process conditions, overcoming interference and obstacles that standard sensors find challenging.

Read more...
Helping mining customers achieve balance
Endress+Hauser South Africa Editor's Choice
The mining industry faces several ESG challenges, particularly in relation to water stewardship, water licensing, water quality monitoring, and emission monitoring. Fortunately, Endress+Hauser is well positioned to help mines achieve their commitments in these areas.

Read more...
Keep the ball rolling
Bearing Man Group t/a BMG Editor's Choice Motion Control & Drives
BMG’s Fluid Technology team has recently completed the design, supply and commissioning of an advanced lubrication system for a main bearing on a ball mill, which has been developed to optimise productivity and minimise maintenance requirements and downtime.

Read more...
Case History 195: Unstable reboiler steam flow
Michael Brown Control Engineering Editor's Choice
A high-pressure steam flow control in a reboiler on a column in a petrochemical refinery continually cycled when placed in automatic. Several attempts had been made to tune the controller, but these had been unsuccessful.

Read more...