Editor's Choice


Loop Signatures 7: Final control elements – Part 3 hysteresis and deadband

June 2021 Editor's Choice

Normal hysteresis

Some of the biggest problems associated with the final control element are hysteresis and backlash. These can roughly be defined as the maximum difference obtained in stem position for the same input up-scale and down-scale. A test to measure hysteresis and deadband in a self-regulating loop is illustrated in Figure 1.

Hysteresis is normally caused by the force that appears every time the valve stem is going to be reversed i.e. moved in a direction opposite to the previous direction of movement. Valve experts have described static frictional force as the amount of force needed to bend the end-fibres of the packing material in contact with the valve stem in the new direction of motion. Once the static frictional force has been overcome by energy provided by the motive power of the actuator and the stem actually starts moving, the static friction force disappears and is replaced by a sliding frictional force, which is very much less than the original static friction.

Subsequent equal movements of the valve stem in the same direction will then generally be greater as the static friction has now disappeared and all the energy produced in the actuator now goes directly into moving the valve stem. It only reappears again on the next valve reversal.

Any deadband (mechanical play or backlash) in the mechanisms of the valve, actuator and positioner combination adds to the hysteresis effect when reversing the valve. As a rough rule of thumb based on tests performed on many thousands of valves, a hysteresis value of not more than 1% of valve movement span is acceptable in practice for a pneumatically operated valve fitted with a positioner. This figure increases to 3% if there is no positioner on the valve.

Hysteresis and deadband increase control variance. In the case of self-regulating processes, they increase the time that the controller needs to make corrections for a load disturbance or setpoint change because every time the controller has to reverse the valve, the controller has to move the PD (controller output) through the full hysteresis range before the valve will move in the opposite direction. As this movement of the PD is performed at the integral term ramp rate, which gets less and hence slower, the closer the PV gets to setpoint, it can take a very long time for the process to actually settle out at setpoint.

Figure 2 illustrates this effect on a flow loop with 5% valve hysteresis, responding to a step change in setpoint. The process has taken close on 3 minutes to settle at the new setpoint. If the valve had been hysteresis free, the process would have settled out at the new setpoint in approximately 20 seconds.

It should be noted that hysteresis and deadband do not cause continuous cycling on self-regulating loops.

Integrating loops on the other hand always cycle if there is any hysteresis and deadband in the valve and if the I term is used in the controller. This is illustrated in Figure 3. Thus it is very important that valves used on integrating processes are in good working order, if cycling and increased control variance are to be avoided!

Negative hysteresis

On reversing a valve with normal hysteresis and deadband using equal steps of PD, as was seen in Figure 1, the valve stem does not get back as far as the equivalent position where it was on the step before the reversal. However on certain loops one finds that the stem actually overshoots this position on the return. This is illustrated in Figure 4.

We have named this particular phenomenon ‘negative hysteresis’ and it occurs if a positioner is present. It is a sign of an underpowered actuator that has difficulty in overcoming the static frictional force. (It may be too small, or else the packing glands have been over tightened). The reason for the overshoot is that the positioner, seeing the valve is not moving, starts inputting excessive pressure into the actuator. Eventually there is enough pressure in the actuator to overcome the static friction. However as the static frictional force disappears, the excess energy in the actuator pushes the stem too far.

If it is possible to bypass the positioner and allow the incoming air signal to operate the actuator directly (be careful that the actuator bench set is in fact 20-100 kPa), and then repeat the step test, one would see that the valve now exhibits high normal hysteresis. Figure 5 illustrates such a test carried out on the same valve which showed the negative hysteresis in Figure 4. The normal hysteresis of approximately 10% is unacceptably high.

Negative hysteresis is most undesirable. For good control it is essential that the actuator should have sufficient power to move the valve to any desired position. Loops with valves displaying negative hysteresis tend to be very cyclic in closed loop control. On occasions, I have seen loops displaying this phenomenon going completely unstable and others cycling continuously.

On occasions, the positioners on valves with negative hysteresis manage to correct the overshoot after a while and bring the valve stem back to the correct position. However this may not happen on every occasion and it makes the valve dynamics very non-repeatable. Such behaviour is illustrated in Figure 6. This open loop test was performed on a flow loop in a brewery using a ‘home-made’ oversized butterfly valve, assembled from components purchased from different manufacturers. It can be seen how non-repeatable the responses are.

A closed loop test, shown in Figure 7, illustrates the resulting instability when the controller was put into automatic and a setpoint change made. In general, it is not a good idea for a plant to try and save money by making up its own valves, not if the process personnel want reasonable control.


About Michael Brown


Michael Brown.

Michael Brown is a specialist in control loop optimisation with many years of experience in process control instrumentation. His main activities are consulting, and teaching practical control loop analysis and optimisation. He gives training courses which can be held in clients’ plants, where students can have the added benefit of practising on live loops. His work takes him to plants all over South Africa and also to other countries. He can be contacted at Michael Brown Control Engineering cc, +27 82 440 7790, [email protected], www.controlloop.co.za


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Harnessing industrial AI agents for reliable automation
Editor's Choice IT in Manufacturing
The excitement around generative AI (GenAI) has been undeniable, promising wide-ranging changes across industries. However, for those of us in the world of industrial control and automation, the realities of implementing these powerful technologies are a little more nuanced.

Read more...
Futureproof your industrial network security with OT-centric cyber security
RJ Connect Editor's Choice
To achieve digital transformation, industrial operators must first address the daunting task of merging their information technology (IT) and operational technology (OT) infrastructure. In this article, we focus on the importance of strong OT network security and provide some tips on how to strengthen cybersecurity for industrial operations.

Read more...
The symbiotic relationship between OEMs and SIs
Schneider Electric South Africa Editor's Choice System Integration & Control Systems Design
While businesses tend to turn directly to original equipment manufacturers OEMs or vendors when embarking on IT projects, the role of the SI as a key facilitator and partner cannot be overstated.

Read more...
Case History 196: Unstable condensate level control.
Michael Brown Control Engineering Editor's Choice Level Measurement & Control
The operators in a petrochemical refinery were having great trouble in trying to stabilise the condensate level in a vessel, and this was adversely affecting other loops downstream. Several unsuccessful attempts had been made to retune the controller.

Read more...
Big themes for 2025
Editor's Choice News
2024 was a year of unprecedented innovation and global upheaval. As we look ahead, Amy Webb, CEO of the Future Today Institute asks which technologies will reshape our world in 2025?

Read more...
Loop signature: Tuning part 4 processes
Michael Brown Control Engineering Editor's Choice Fieldbus & Industrial Networking
The purpose of this particular article is to try and give those unfortunate enough to have to use SWAG (scientific wild ass guess) tuning a bit of an idea of how to go about it, and even more importantly some understanding of a couple of basic principles.

Read more...
EtherCAT and PC-based control elevate next-generation laser cutting machine
Beckhoff Automation Editor's Choice
Cincinnati Incorporated has been building sheet metal processing equipment for 125 years. Since the switch to PC-based control, the only limits to development have been physical.

Read more...
Ensure seamless integration and reliable performance with CANbus solutions
RJ Connect Editor's Choice Fieldbus & Industrial Networking
Modern industrial applications require robust and effective communication. The CANbus product range guarantees smooth integration and data transfers throughout systems.

Read more...
Connecting every transport node
RJ Connect Editor's Choice Data Acquisition & Telemetry
Stockholm's bus system strategically links urban mainline, suburban mainline, non-mainline routes, community service buses and night buses. To acquire and process data from multiple sources and analyse onboard information on their moving buses, Transdev sought a dependable and powerful onboard computer. It teamed up with CatAB, Moxa’s local representative, known for delivering top-notch industrial data communication boards and equipment since 1988.

Read more...
Local range of planetary units
SEW-EURODRIVE Editor's Choice Motion Control & Drives
As SEW-EURODRIVE South Africa actively extends its offerings to customers, the SEW PPK and SEW P2.e industrial gearbox ranges are good examples of solutions that are well suited to the local business environment.

Read more...