Electrical Power & Protection


Measuring and analysing PV circuit performance

February 2025 Electrical Power & Protection

Regardless of the test method, you must know the plane of array irradiance and cell temperature to evaluate PV circuit performance. Pay attention to environmental conditions to ensure that you can interpret your I-V curves with accuracy, as rapid changes in the irradiance or cell temperature can introduce errors to your I-V curve tests. Proper sensor types and test methods like the Fluke Solmetric PVA 15i-V curve tracer should be used for reliable results.

Environmental conditions for testing

Optimal performance tests are conducted under stable weather conditions with irradiance above 700 W/m2, crucial when establishing a performance baseline at the commissioning or recommissioning process during troubleshooting. The standard test condition irradiance is 1000 W/m2, and the closer the field test conditions are to standard test conditions, the more accurate the interpretation of I-V curves will be. Good test conditions will most likely occur during the 4-hour window around solar noon.

Irradiance measurements and their impact

Irradiance measurement errors can significantly affect photovoltaic performance testing. For instance, a small error margin in irradiance can overshadow the accuracy of even high-quality I-V curve tracers like the Fluke Solmetric PVA -1500. Fast-moving clouds near the sun and high-elevation cirrus clouds are particularly problematic. One of the benefits of using I-V curve tracers for performance test measurements is that you can save critical environmental data along with the I-V data. This eliminates manual data entry errors that can cause trouble later, and minimises the opportunity for errors associated with rapid changes in test conditions.

Choice of sensors

True pyranometers are not a good choice for I-V curve testing as they have a wide, flat spectral response that differs from that of crystalline and thin-film module technologies. Hand-held irradiance sensors are not a good fit as they can be challenging to orient reliably in the plane of the array. Hand-held irradiance sensors may also have an angular response that differs substantially from fielded PV modules. Angular response is more significant early or later in the dat, or on days when the clouds scatter a significant amount of sunlight. Under these test conditions, the array and sensor must have an equally wide sky view.

Reflective light influence

Irradiance sensors should not be influenced by strong optical reflections, as this can lead to inaccurate readings. If the irradiance sensor picks up significantly more reflected light than the PV modules under test, the model will overpredict ISC, and the module will appear to be underperforming. Under certain circumstances, sunlight reflected from metal surfaces can greatly exaggerate the irradiance reading. You can usually remedy this by changing the sensor mounting location.

Temperature measurements in photovoltaic systems

While PV module performance is less sensitive to temperature variations than irradiance, it’s still a significant factor. Light-gauge thermocouples are preferred for measuring cell temperature under varying conditions. Positioning the thermocouple correctly is vital for accurate readings. Since array and module edges tend to run cool, position the thermocouple between the corner and the centre of a module located away from the cooler array perimeter. This practice aims to select a sensor attachment point that approximates the average backside temperature. The tip of the thermocouple must make good contact with the back of the PV module as air gaps will interrupt heat transfer, resulting in low temperature readings. When moving the thermocouple between identical array sections, place it at the same relative location each time to avoid introducing artificial temperature shifts.

For more information contact Comtest, +27 10 595 1821, [email protected], www.comtest.co.za


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Automated test and measurement
Comtest Maintenance, Test & Measurement, Calibration
Comtest, in partnership with global brands, provides customised solutions with integrated hardware and software for efficient testing and data collection.

Read more...
Raptor switches
Phoenix Contact Electrical Power & Protection
The Phoenix Contact Raptor switches enable reliable and safe operation in extreme ambient conditions. The managed switch portfolio meets the stringent requirements of IEC 61850-3 and IEEE 1613 standards and is ideal for critical infrastructure and power supply applications.

Read more...
Electrical safety warning indicators
Electrical Power & Protection
Remlive electrical safety warning indicators have been keeping the workplace safe for more than 25 years.

Read more...
Self-contained standalone lightning warning system
Senseca Electrical Power & Protection
The BTD-200 lightning warning system from Biral (UK) is a complete detection and warning system. Its highly specialised aviation grade lightning detection technology delivers the warning as soon as lightning is detected and before the first strike.

Read more...
Three ways to conduct thermal inspections
Comtest Temperature Measurement
There’s no universal solution for all infrared inspections with a Fluke thermal camera, also known as a thermal imager. You need to match your method to the type of equipment you’re inspecting and the level of detail you require.

Read more...
Half brick second generation converter
Vepac Electronics Electrical Power & Protection
The Supreme series half brick second generation converter from Vepac is composed of isolated, board-mountable, fixed switching frequency DC-DC converters that use synchronous rectification to achieve extremely high power conversion efficiency.

Read more...
Multimeters: the perfect entry-level choice
Comtest Electrical Power & Protection
Experience the precision, durability and safety of professional-grade test tools with the entry level Fluke 15B+ and 17B+ digital multimeters.

Read more...
South Africa can become an important EV manufacturer
Electrical Power & Protection
A year ago, South Africa was mired in loadshedding, with the importance and relevance of electric vehicles (EVs) far from the public imagination. Fast forward a year and much has changed

Read more...
Self-contained standalone lightning warning system
Senseca Electrical Power & Protection
Biral, now part of the Senseca Group, and a specialist in environmental and meteorological measurement instrumentation, has launched its BTD-200 lightning warning system, which is a complete detection and warning system.

Read more...
Compact, high density power protection system for AI, data centre and large-scale electrical workloads
Schneider Electric South Africa Electrical Power & Protection
Schneider Electric has launched its new Galaxy VXL – a highly efficient, compact, modular, scalable and redundant 500-1250 kW (400 V) 3-phase uninterruptible power supply (UPS), complete with enhanced cybersecurity, software and safety features.

Read more...