Electrical Power & Protection


Measuring and analysing PV circuit performance

February 2025 Electrical Power & Protection

Regardless of the test method, you must know the plane of array irradiance and cell temperature to evaluate PV circuit performance. Pay attention to environmental conditions to ensure that you can interpret your I-V curves with accuracy, as rapid changes in the irradiance or cell temperature can introduce errors to your I-V curve tests. Proper sensor types and test methods like the Fluke Solmetric PVA 15i-V curve tracer should be used for reliable results.

Environmental conditions for testing

Optimal performance tests are conducted under stable weather conditions with irradiance above 700 W/m2, crucial when establishing a performance baseline at the commissioning or recommissioning process during troubleshooting. The standard test condition irradiance is 1000 W/m2, and the closer the field test conditions are to standard test conditions, the more accurate the interpretation of I-V curves will be. Good test conditions will most likely occur during the 4-hour window around solar noon.

Irradiance measurements and their impact

Irradiance measurement errors can significantly affect photovoltaic performance testing. For instance, a small error margin in irradiance can overshadow the accuracy of even high-quality I-V curve tracers like the Fluke Solmetric PVA -1500. Fast-moving clouds near the sun and high-elevation cirrus clouds are particularly problematic. One of the benefits of using I-V curve tracers for performance test measurements is that you can save critical environmental data along with the I-V data. This eliminates manual data entry errors that can cause trouble later, and minimises the opportunity for errors associated with rapid changes in test conditions.

Choice of sensors

True pyranometers are not a good choice for I-V curve testing as they have a wide, flat spectral response that differs from that of crystalline and thin-film module technologies. Hand-held irradiance sensors are not a good fit as they can be challenging to orient reliably in the plane of the array. Hand-held irradiance sensors may also have an angular response that differs substantially from fielded PV modules. Angular response is more significant early or later in the dat, or on days when the clouds scatter a significant amount of sunlight. Under these test conditions, the array and sensor must have an equally wide sky view.

Reflective light influence

Irradiance sensors should not be influenced by strong optical reflections, as this can lead to inaccurate readings. If the irradiance sensor picks up significantly more reflected light than the PV modules under test, the model will overpredict ISC, and the module will appear to be underperforming. Under certain circumstances, sunlight reflected from metal surfaces can greatly exaggerate the irradiance reading. You can usually remedy this by changing the sensor mounting location.

Temperature measurements in photovoltaic systems

While PV module performance is less sensitive to temperature variations than irradiance, it’s still a significant factor. Light-gauge thermocouples are preferred for measuring cell temperature under varying conditions. Positioning the thermocouple correctly is vital for accurate readings. Since array and module edges tend to run cool, position the thermocouple between the corner and the centre of a module located away from the cooler array perimeter. This practice aims to select a sensor attachment point that approximates the average backside temperature. The tip of the thermocouple must make good contact with the back of the PV module as air gaps will interrupt heat transfer, resulting in low temperature readings. When moving the thermocouple between identical array sections, place it at the same relative location each time to avoid introducing artificial temperature shifts.

For more information contact Comtest, +27 10 595 1821, [email protected], www.comtest.co.za


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Solar energy reimagined
Electrical Power & Protection
As the global energy sector races to meet net-zero commitments, utility-scale solar is undergoing a fundamental transformation. No longer defined by megawatt capacity alone, solar projects are now being evaluated on their ability to deliver dispatchable power, enhance grid stability, and provide critical ancillary services.

Read more...
Schneider launches new Breaker Status and Communication Module
Schneider Electric South Africa Electrical Power & Protection
Schneider Electric has launched its new Breaker Status and Communication Module Modbus SL/ULP, which delivers enhanced performance, improved connectivity and simplified integration for power distribution systems.

Read more...
Battery energy storage is critical to stabilise SA’s grid
Electrical Power & Protection
As the global energy transition accelerates, South Africa is quietly becoming a major player in one of the sector’s fastest-growing energy segments: battery energy storage systems.

Read more...
Reliable redundancy with the Mibbo
Conical Technologies Electrical Power & Protection
In industrial automation and control systems, uninterrupted power isn’t a luxury, it’s essential. The Mibbo M3DN Series Redundant Module steps in as the perfect solution when you need reliable 24 V DC power without the risk of single-point failure

Read more...
Rugged, industrial-Grade DIN rail
Conical Technologies Electrical Power & Protection
The Mibbo MTR960W from Conical Technologies is a high-powered, compact and reliable industrial power supply. It delivers a solid 960 watts of output power at 24 or 48?V DC, and is reliable and cost-effective.

Read more...
Schneider Electric’s microgrid enables optimised energy operations
Schneider Electric South Africa Electrical Power & Protection
Schneider Electric has launched its EcoStruxure Microgrid Flex product.

Read more...
Energy management pays off
Electrical Power & Protection
Onsite energy utilities such as boilers must be independently managed to achieve meaningful performance outcomes.

Read more...
Integration of power and energy management with industrial
Schneider Electric South Africa Electrical Power & Protection
Water and power management form the backbone of society and the country’s industrial landscape. With infrastructure challenges, stricter environmental regulations and the need for greater operational efficiency, water and wastewater operators need to optimise their systems. This is where the integration of power and energy management and industrial automation can alleviate some of these operational challenges.

Read more...
Maintenance and health of battery storage systems
Comtest Electrical Power & Protection
How to maintain batteries.

Read more...
Software for designing high-tech
Electrical Power & Protection
Siemens Digital Industries Software has announced that Arc Boat Company (Arc), a startup on a mission to electrify the marine industry, has adopted the Siemens Xcelerator portfolio of industry software to design and manufacture their high-performance, fully electric boats.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved