IT in Manufacturing


Principles for effective systems engineering and integration

September 2024 IT in Manufacturing


Jaco du Plooy, product marketing manager at Eaton Africa.

Eaton has introduced the ‘Power of Six,’ a set of principles forming the foundation of its systematic approach to data centre design. This holistic perspective aligns with South Africa’s power infrastructure needs, advancing the country towards self-aware and self-optimised data centres. “In this article, we explore how using these systems engineering principles allows us to de-risk the design, reduce complexity, and optimise the performance of data centres,” says Jaco du Plooy, product marketing manager at Eaton Africa.

The approach includes a digital layer such as Eaton’s Brightlayer Data Centres suite to manage complex ecosystems of IT and OT assets, while providing full system visibility.

Design of critical power system components: The first principle focuses on understanding the characteristics, behaviours and impacts of critical components within power systems. By doing so, performance can be optimised, energy efficiency enhanced, and IT needs effectively met. This involves using data analytics in the operational phase to improve efficiency, maximise utilisation, and anticipate problems, making the implementation crucial.

Asset management and condition-based monitoring: This principle emphasises incorporating a digital layer into power management systems for asset monitoring and management, allowing proactive measures to increase lifespan and optimise performance. Continuous monitoring and maintenance ensure peak efficiency and identify potential risks. Using digital twinning, AI, and machine learning, performance can be optimised from the design stage by identifying potential equipment issues, and tracking energy efficiency through consumption monitoring.

System design: This principle encourages a broader system design approach, considering interdependencies beyond the power train. Properly integrated components minimise energy wastage and ensure efficient use of high-power loads like cooling, reducing demand on the power train. A well-designed, integrated system reduces component failure, optimises usage, and prolongs lifespan, contributing to operational and sustainability goals. Improved communication between system components can reduce data latency and optimise system performance.

Energy efficiency: A systems engineering approach helps achieve sustainability goals and reduce operational costs, by minimising power losses and optimising system efficiency. Selecting the right equipment, such as using copper busbars in low-voltage systems, can significantly improve efficiency. A digital software platform can monitor and manage energy efficiency through machine learning and AI, identifying and preventing power distribution losses. This approach enables significant energy savings and drives overall system performance.

Integration with renewables: Integrating renewable energy sources into the power ecosystem is essential. Proper integration provides resilient and reliable power, reducing the likelihood of outages. The reduced rotating mass and inertia in renewables affect power flow quality due to less frequency control and more volatility. Managing the variability of supply, and ensuring grid stability, require a comprehensive approach, considering the impacts on harmonics and voltage fluctuations from inverter-based power sources.

Flexible and dynamic design: A flexible and dynamic design approach accommodates changing demands and emerging technologies like AI. Staying adaptable ensures solutions remain relevant and effective in rapidly evolving environments. Eaton’s products address the challenges of variable loads due to fluctuations in demand and generation, optimising system operation, voltage levels and power losses.

“To achieve a self-aware and self-optimised data centre, the industry must shift towards a systems-based design. Embracing a set of principles and adopting a systems mindset is essential, and the Power of Six enables this transition. This approach facilitates driving operational value and leveraging intelligent, actionable insights from your data. In these uncertain times, adapting to evolving power and environmental demands requires a new way of thinking,” concludes du Plooy.

For more information contact Eaton, +27 11 824 7400, [email protected], www.eaton.co.za




Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Development of motor control units for automotive industry
Siemens South Africa IT in Manufacturing
SEDEMAC has adopted the Siemens Xcelerator portfolio of industry software, which is used in the development of its motor control units and engine control units. The motor control units are used in EVs, hybrids, ebikes and power tools, while the engine control units are used for off-road and on-road engines.

Read more...
Cybersecurity and cyber resilience – the integrated components of a robust cyber risk management strategy
IT in Manufacturing
Organisations continuously face numerous cyberthreats in today’s digital landscape, and while many prioritise cybersecurity to safeguard digital assets, their strategies for cyber resilience often become neglected.

Read more...
Sustainable last-mile delivery electric trucks
Siemens South Africa IT in Manufacturing
Workhorse Group, an American technology company focused on pioneering the transition to zero-emission commercial vehicles, has adopted the Siemens Xcelerator portfolio of industrial software as it builds electric trucks for sustainable last-mile delivery.

Read more...
South Africa’s role in the AGI revolution
IT in Manufacturing
AI has found its way into general conversation after the emergence of large language models like ChatGPT. However, the discussion is increasingly turning to the search for Artificial General Intelligence (AGI), which could entirely change the game.

Read more...
Predictive asset performance management with ABB Ability Genix
ABB South Africa IT in Manufacturing
The ABB Ability Genix APM suite is a comprehensive asset management platform powered by AI, IIoT and model-based predictive data analytics. This enables a paradigm shift towards a more proactive and predictive asset management approach.

Read more...
Intelligent automation primed for $47 billion revenue by 2030
IT in Manufacturing
According to GlobalData, the intelligent automation market is set to grow from $18 billion in 2023 to $47 billion in 2030, driven by advancements in AI, particularly the rapid adoption of generative AI.

Read more...
Chocolate manufacturing with Siemens Xcelerator
Siemens South Africa IT in Manufacturing
Freybadi, one of the largest chocolate manufacturers in Indonesia and a trusted supplier of chocolate in the Asia-Pacific, Middle East and African regions, has adopted the Siemens Xcelerator portfolio of industry software to optimise its manufacturing and production processes.

Read more...
A CFO’s guide to unlocking the potential of gen AI
IT in Manufacturing
CFOs of leading global organisations understand that their role extends beyond mere financial oversight; they are pivotal in steering organisation-wide transformation, particularly in the realm of technological advancement.

Read more...
Higher level cybersecurity certification for Schneider Electric
Schneider Electric South Africa IT in Manufacturing
Schneider Electric’s EcoStruxure IT NMC3 platform has obtained a new and higher level of cybersecurity certification, making it the first data centre infrastructure management network card to achieve SL2) designation from IEC.

Read more...
Industrial automation edge AI
Vepac Electronics IT in Manufacturing
Teguar, a leading provider of industrial computer solutions, has announced an innovative partnership with Hailo, an AI chip maker renowned for its high-performance edge AI accelerators. This marks a significant step forward in Teguar’s mission to provide powerful and reliable computing solutions for a wide range of industries.

Read more...