Motion Control & Drives


Robot breaks world record

January 2024 Motion Control & Drives

An untethered robot invented at the Oregon State University (OSU) College of Engineering and manufactured by OSU spinout company, Agility Robotics, has established a Guinness World Record for the fastest 100 metres by a bipedal robot. Named Cassie, the robot set a time of 24,73 seconds at an average speed of 4 m/s, starting and finishing the sprint from a standing position, without falling. Unlike a human sprinter, Cassie has bird-type legs with knees that bend backwards. To learn how to sprint, the OSU researchers say the robot’s programming was trained in a week-long simulation that compressed a year’s worth of training experiences by computing numerous calculations simultaneously.

Cassie was developed as a commercial robot with a $1 million grant from DARPA, and has been used by top universities and robotics laboratories in the US as a platform for exploring machine learning. It isn’t the fastest legged robot, but the fastest bipedal. This design has particular advantages in allowing robots to traverse spaces designed for humans. Cassie’s creators say that running wasn’t the hardest part of the challenge, but getting the robot to start and stop. “Starting and stopping in a standing position are more difficult than the running part, similar to how taking off and landing are harder than actually flying a plane,” says OSU professor, Alan Fern.

The feat is especially impressive considering Cassie pulled it off blind, without an onboard camera. Instead, Cassie first learned how to run through a series of sim-to-real training sessions. OSU’s sim-to-real machine learning methods have enabled Cassie to benefit from millions of parallel-processed simulations before deployment. All that preparation ensures the robot is ready for any given task, which can include many variables, both known and unknown. Cassie has already learned how to run, hop, skip and climb stairs.

With just two legs, Cassie’s functions are limited. Agility now uses the bipedal technology developed for Cassie to power its new robot Digit, which is not only capable of walking and climbing stairs, but also has rudimentary arms for picking up and carrying small packages. This next-generation version will include a torso, arms, hands, and a head. Digit will dramatically increase functionality. It will be much more humanoid in both shape and intention.

“The key point is that sim-to-real − which teaches a system to do jobs and tasks, as opposed to traditional programming − applies much more widely than legged robotics,” Fern says. “It’s about creating a simulator where you can practice doing something. It’s a learning program, where the practice of an equivalent of years of experience can take place very fast in a computer, and then allow for the task to be safely completed.”

He explains that this represents a radical departure from the notion of trying to program a set of rules to dictate a desired action. “That’s an approach that doesn’t work, and it isn’t scalable,” he says. “The key is to program computers to learn, and then figure out how to train them. One way is through simulation, although simulation will never be a perfect reflection of the real world. So we always put in random variations to make the simulations more robust.”

As for current challenges, Agility Robotics CTO, Jonathon Hurst says that the biggest hurdle for robots is mastering the ability to navigate their environment. Although many types of robots are already deployed in industry, a human operator is often needed, and the environment is custom-fit. Such an approach won’t work in homes, which are quite different. It would be cost-prohibitive to retrofit a warehouse, let alone a single-family house, specifically for a robot. So, we need robots that can adapt, understand variables, and adjust as needed.

As for where things are headed in workforce applications, Fern envisions a future where robots train to maintain balance through physical tasks that involve variable forces beyond the robot itself, such as carrying loads or pulling carts. He can imagine a team of robots at a construction site under the command of a single operator. As costs come down, he also envisions robots in homes, performing basic tasks. One application could be performing duties to enable older adults to live more independently.

While advancements in the training of robots like Cassie, and soon Digit, have been awe-inspiring as of late, Fern and Hurst hope to see much more progress over the next five to ten years as artificial intelligence comes of age.




Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Problem solving under pressure
Axiom Hydraulics Motion Control & Drives
The greatest strength of Axiom Hydraulics lies in the company’s ability to solve complex problems and adapt systems to meet unique challenges. This capability stems from two key factors: the diverse experience of its team members, which spans decades across multiple disciplines, and their unwavering dedication to their clients.

Read more...
New AI advisor for robot selection
igus Motion Control & Drives
igus’ new AI chatbot has been added to the online platform RBTX.com. The interactive consultant is designed to enable companies with little previous experience and technological expertise to quickly and reliably put together low-cost automation solutions to becoming more competitive.

Read more...
The world’s most powerful worm
Motion Control & Drives
Geothermal energy from the natural heat of the Earth is an inexhaustible resource, yet the growth of the global geothermal power sector lags behind other renewable energies. Now Swiss startup, Borobotics is hoping to speed this up with its innovative new electric-powered geothermal drilling robot, which can be used to fast-track and lower the cost of heat pump installations in confined spaces.

Read more...
Building resilience in extreme environments
ACTOM Electrical Machines Motion Control & Drives
The petrochemical and oil and gas sectors operate in unforgiving environments. In this high-stakes industry, operational efficiency is vital, and unplanned downtime can have severe consequences. To thrive in this demanding landscape, a proactive and sophisticated approach to maintenance is no longer an option, but a necessity.

Read more...
Collaborative robots pioneer automation revolution
Motion Control & Drives
Collaborative robots (cobots) are a versatile, cost-effective robot form factor that is demonstrating value across many industry verticals. According to a new report from ABI Research, revenue from cobots will increase from $970 million in 2023 to $7,2 billion by 2030.

Read more...
SKF shines at Mining Indaba
SKF South Africa Motion Control & Drives
This year marked SKF’s second consecutive participation at Mining Indaba, where the global bearing and seal manufacturing giant spotlighted its premium quality, future-smart, environmentally sustainable mining and industrial products, technologies and services.

Read more...
Reducing the risk of sewage spills
Motion Control & Drives
The UK government has announced plans to impose tougher penalties on water companies in England and Wales that fail to prevent sewage discharges into rivers and seas. David Strain, technical director at the automation systems specialist, Technidrive explains how solutions like variable speed drives and smart monitoring systems can help water companies reduce the risk of sewage spills and ensure compliance.

Read more...
High-performance electric wire rope hoists
Motion Control & Drives
Becker Mining South Africa’s Kito RX electric wire rope hoists, launched in Africa two years ago, play a critical role in many industries.

Read more...
Complete solutions for the die casting industry
Motion Control & Drives
Die casting is a manufacturing process that involves injecting molten metal into a mould to produce complex, high-precision components. FUCHS Lubricants South Africa addresses the evolving demands of the die casting sector through continuous product innovation and development.

Read more...
Planetary gear units for high torque requirements
Motion Control & Drives
Packing a compact design, along with high torque and low-speed outputs, the new SEW PPK and SEW P2.e planetary gear units from SEW-EURODRIVE offer new capabilities in continuous heavy-duty applications where space is at a premium.

Read more...