Editor's Choice


Case history 189: Poor furnace temperature control.

September 2023 Editor's Choice PLCs, DCSs & Controllers

Many process engineers do not appreciate the importance of flow loops in their unit controls.

A senior process engineer once told me that flow loops need not be tuned well, as they generally have little effect on the more important and much slower loops like temperatures and pressures. In actual fact, flow loops can be vitally important for ensuring that other controls work properly. The example given here is an excellent illustration of this.

The process unit used for this example is the steam desuperheater on a boiler in a petrochemical refinery. The water is heated using gas as the fuel. The final desuperheater outlet temperature is a cascade secondary loop, with the primary control being the outlet temperature control of the upstream desuperheater. Just out of interest, there was a measurement of the outlet steam flow after the second desuperheater, but they had not used this as a further cascade to ensure the temperature control worked properly, which is something I recommended they do. A secondary flow cascade loop takes care of any valve problems as it can quickly ensure that the flow of steam keeps to the amount demanded by the temperature controller. In actual fact, there were several problems with the steam desuperheater valve.

The problem being experienced on the steam temperature was that it was cycling quite badly, and they had not been able to establish the cause. Investigations were carried out as to what was causing the cycle, by checking all the various controls that could have had an effect on the desuperheaters’ outlet temperatures. It was found quite quickly that the culprit causing the problem was the combustion air flow control loop.

Figure 1 is a Closed Loop as Found test on the airflow, with the controller in automatic, and using the original tuning parameters. A series of setpoint changes was made, as can be seen in the figure. The flow was apparently in a continuous slow cycle, with a 20% amplitude and a period of roughly 100 seconds. The other two traces shown in the figure are the outlet temperatures of the two desuperheaters in cascade. It can be clearly seen what a large influence the cycle of the air flow was having on them, particularly on the secondary cascade desuperheater.

Figure 2 shows an Open Loop test performed on the air flow where steps are made on the PD (controller’s output). This shows some remarkable things, which explain why the control was cycling in automatic:

• The moment the PD dropped below 41%, the flow immediately dropped by about 20%, and one could not control the flow once the PD had gone below that value.

• When the PD was moved up in small 3% steps from 41%, the flow responded pretty well. However when we stepped the PD down again, the flow did not move at all until the PD went below 41%. Then it immediately dropped by the 20% as mentioned above.

• When repeating the test it was found on a couple occasions that the flow did occasionally slowly move a little on downward steps of the PD in the upper region.

These observations show that there were very serious problems with the air damper, and proved that no real control was possible until it could be fixed or replaced. It also conclusively showed why the cycle occurred in automatic, with the controller trying to get the flow to a value in the region over which the valve just jumped up and down. This is a good example of how poor control on a flow can seriously influence other more important and slower controls.



Michael Brown is a specialist in control loop optimisation, with many years of experience in process control instrumentation. His main activities are consulting and teaching practical control loop analysis and optimisation. He now presents courses and performs optimisation over the internet. His work has taken him to plants all over South Africa and also to other countries. He can be contacted at: Michael Brown Control Engineering CC, +27 82 440 7790, [email protected], www.controlloop.co.za


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Connecting every transport node
RJ Connect Editor's Choice Data Acquisition & Telemetry
Stockholm's bus system strategically links urban mainline, suburban mainline, non-mainline routes, community service buses and night buses. To acquire and process data from multiple sources and analyse onboard information on their moving buses, Transdev sought a dependable and powerful onboard computer. It teamed up with CatAB, Moxa’s local representative, known for delivering top-notch industrial data communication boards and equipment since 1988.

Read more...
Local range of planetary units
SEW-EURODRIVE Editor's Choice Motion Control & Drives
As SEW-EURODRIVE South Africa actively extends its offerings to customers, the SEW PPK and SEW P2.e industrial gearbox ranges are good examples of solutions that are well suited to the local business environment.

Read more...
Case History 195: Unstable reboiler steam flow
Michael Brown Control Engineering Editor's Choice
A high-pressure steam flow control in a reboiler on a column in a petrochemical refinery continually cycled when placed in automatic. Several attempts had been made to tune the controller, but these had been unsuccessful.

Read more...
Open control system for retrofit of conveyor control system
Beckhoff Automation Editor's Choice
For every online retailer, warehouse logistics is part of the critical infrastructure. An Australian office equipment supplier has retrofitted the warehouse logistics installation of its central warehouse, and replaced the proprietary decentralised controllers of the conveyor lines with PC-based control from Beckhoff, based on powerful EtherCAT communication.

Read more...
Digital industrial platforms and why they are important
Editor's Choice
One of the most significant trends driving digital transformation is the emergence of digital industrial platforms. This article will briefly explore what digital industrial platforms are, why they are important, and how they might shape the future of industrial automation.

Read more...
Celebrating 65 years: rebuilding and redefining its legacy
Editor's Choice News
Founded in 1959 by Neill Simpson, Axiom Hydraulics has grown into one of South Africa’s elite hydraulic companies. Over the past six and a half decades they’ve weathered many challenges, but none as devastating as the fire of 2023.

Read more...
Young robotics team takes world title
igus Editor's Choice News
In an inspiring demonstration of innovation and teamwork, Texpand, a young South African robotics team, recently made history by winning the 2024 FIRST Tech Challenge World Championships.

Read more...
SAIMC: It’s not black and white
SAIMC Editor's Choice SAIMC
Grey imports are a problem worldwide, not least in the automation industry in South Africa. The Supplier Advisory Council (SAC) operates under the umbrella of SAIMC, and is tackling this problem head-on.

Read more...
Loop signature 25: Tuning part 3 - Results of tuning a particular simple self-regulating process by several different methods.
Michael Brown Control Engineering Editor's Choice
A couple of SWAG methods of tuning were given in the previous Loop Signature article. I have tuned a simple self-regulating process using those methods, and two other tuning methods, one of them being the sophisticated Protuner tuning package, which is the system I employ. The tests were performed on a very accurate and powerful simulation package, and the results are compared below.

Read more...
PC-based control for advanced hydrogen storage technology
Beckhoff Automation Editor's Choice PLCs, DCSs & Controllers
The proportion of renewable energies from solar, wind and water is rising continuously. However, sufficient storage options are of the essence to use these energies as efficiently as possible. GKN Hydrogen offers a particularly compact and safe option, low-pressure metal hydride hydrogen storage systems with PC-based control from Beckhoff.

Read more...