IT in Manufacturing


Why AI is not going to change the world (too much)

June 2023 IT in Manufacturing

Large Language Models (LLMs) have come onto the scene and really shaken up the technology world over the last couple of months, and it is very clear that this technology unlocks a lot of exciting new possibilities. However, I feel like there seems to be a lot of fear and hype around the technology, and I think that it might be a bit premature. LLMs, as they exist today, are very good at two things: generating text and understanding natural language. Although we have seen a lot of hype around the potential impact of this technology, I do not think that either one of these innovations will change the world too much. I am also acutely aware of the danger of making predictions like this about technology.


Hanno Brink.

To test the extent to which current text generation capabilities will impact the world, I have tried to use it to write an article, write a manual for a board game, write relatively complex code, and finally to document code.

When writing an article for publication, AI can provide you with a summary of the current thinking and definitions, and edits the text well. At the moment, we still have the problem that the technology often makes false statements, but even if we solve this problem completely, it only echoes current thinking and formats it nicely. Those things, however, do not really make for an article worth reading. What really makes an article worth reading are the brand-new ideas that are captured on the page, things that extend or go against current thinking.

When writing a manual for a board game, the AI does not know the rules, and explaining the rules up-front is the equivalent of writing a manual. AI is great at editing the manual, but the rules need the human element, which means that there is no real change in the way we work when creating brand new documents.

Code is interesting because the code AI generates for very small problems is mostly good enough. However, as soon as the problems reach a certain complexity, AI falls flat. This means you spend your time debugging unfamiliar code rather than thinking about code upfront and typing code. You might be thinking that this is the problem with LLMs, but I expect it would be able to do this flawlessly soon. The real problem is that code always solves real-world problems and lives in complicated domains. Code captures and formalises real-world business processes and processes that are so unique and convoluted that a language model won’t be able to capture all the context effectively. So, it might save you a few visits to Stack Overflow, and help you type out code more quickly, but a developer would ultimately still need to understand the problem domain and come up with a good solution.

Finally, when documenting code, I have been very impressed by LLMs’ ability to identify how the code works, but what we capture in our documentation is often not how it works, but rather the real-world problem that it solves. This is something that AI cannot give you without a large amount of context about the problem domain.

From these experiences, I do not think that text generation will significantly impact most of what humans do on a day-to-day basis. I expect that the days of text that has not been edited by AI are pretty much over, but I also predict that with text becoming so cheap, we will soon value brevity and directness a lot more. That does not mean that we will not see any disruptive use cases of text generation. Chatbots, video game NPCs, and interview coaching are just a few of the exciting new innovations we will probably see more of.

However, LLMs are also very good at understanding natural language, and this means that we can now interface with existing technologies using natural language. This should make tools with steep learning curves much more accessible to the layperson. I can imagine telling Photoshop to remove the lamppost from the photo of you and your friend on holiday and it magically happening, but as soon as the requirements become more complex, then using natural language will become quite cumbersome or even completely inadequate.

This is because the way that these tools have evolved over the previous decades has led to interfaces that are optimised to be as simple, fast, direct, and unambiguous as possible. These are all properties that natural language does not really possess. Natural language is very messy, verbose, and ambiguous, and I suspect that anyone with some competency in using the software tools would much prefer the more precise control that the traditional tools give you.

In conclusion, LLMs have certainly already had some impact on how we write text, and will soon start impacting how we interact with technology. There might also be odd cases where understanding and generating large amounts of text could lead to significant productivity increases or brand new innovations that change specific industries. However, from my experience with these tools, I think these use cases are not nearly as common as the hype train would have us believe, and I reckon that our jobs would, for the most part, stay pretty much the same. Ultimately, it seems that the human element remains critical for generating truly innovative ideas, solving complex problems, and providing precise control over software tools.

Now, off to ChatGPT to see what it thinks of my writing.




Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Five data centre trends to watch in 2025
IT in Manufacturing
Any innovation that comes out in 2025 – whether it’s flying cars, highly advanced AI or a breakthrough medical treatment – will be built on the back of an equally innovative IT foundation driven by data. Data that needs to be stored, managed and made accessible in the data centre, in the cloud or at the edge. Is it too much of a stretch to say the future of humankind is dependent on data storage? We don’t think so.

Read more...
Recovering from a cyberattack
IT in Manufacturing
While many organisations have invested heavily in frontline defence tools to try to keep out bad actors, they have spent far less time and money preparing for what happens when the criminals eventually get in. And they will get in.

Read more...
The value of proactive maintenance management
Schneider Electric South Africa IT in Manufacturing
Maintenance has come a long way from the days when we waited for things to break, and thanks to the ever-increasing capabilities of technology, predictive maintenance has become a viable solution for keeping equipment running smoothly and efficiently around the world.

Read more...
Significant decarbonisation can be achieved in the mining industry
ABB South Africa IT in Manufacturing
ABB has released a global report titled ‘Mining’s Moment’, which highlights the progress being made by the mining industry to make operations more sustainable.

Read more...
Pinpointing pipeline occurrences in seconds, not hours
Schneider Electric South Africa IT in Manufacturing
At any given moment, thousands of kilometres of critical assets flow through pipelines that cross veld, mountainous areas, dense forests, and even busy streets. Surprisingly, many of these pipelines operate either unmonitored or with scant oversight, leading to missed opportunities for operational continuity and efficiency.

Read more...
Next-generation AI-enhanced electronic systems design software
Siemens South Africa IT in Manufacturing
Siemens Digital Industries Software has launched the latest advancement in its electronic systems design portfolio. The next-generation release takes an integrated and multidisciplinary approach, bringing a unified user experience that delivers cloud connectivity and AI capabilities to push the boundaries of innovation in electronic systems design.

Read more...
Spatial computing and AI – where no man has sustainably gone before
Schneider Electric South Africa IT in Manufacturing
Some will argue that we now live in a sci-fi world where we dream of electric sheep, and today’s technology – unlike HAL – can provide us with the answers we seek. To the realist it might seem a bit implausible, but when you start using terms like ‘spatial computing realises sustainable AI’ it doesn’t seem that far-fetched.

Read more...
Safeguarding DCS today and tomorrow
Schneider Electric South Africa IT in Manufacturing
Today’s distributed control systems (DCS) are highly intelligent, converging OT and IT in a centralised manner that allows for simplified management and coordination of operations. It is technology evolution at its finest, but with a caveat, cybersecurity challenges.

Read more...
Quantum computing is not as futuristic as it sounds
IT in Manufacturing
The first quantum computer was created almost three decades ago. While its applications are still unknown to many, this advanced field combines computer science, physics and mathematics to deliver solutions the world has been trying to find for aeons – and those it doesn’t yet know it needs.

Read more...
Transform field data into actionable business data
IT in Manufacturing
As part of its ongoing commitment to enhancing industry connectivity, Teledyne Gas & Flame Detection is making its new and proprietary Teledyne GDCloud available with the company´s GS700, GS500 and Shipsurveyor portable gas leak detectors, and also its PS200 portable four-gas monitor for personal safety and confined-space applications.

Read more...