Motion Control & Drives


Maximising motor performance and energy efficiency

June 2023 Motion Control & Drives

The power usage of motors used in machinery totals 40 to 50% of the world’s electricity consumption, making these industry-essential devices a key energy reduction target. The market is seeing a proliferation of industrial motors claiming to offer improved energy efficiency. The latest inverter motors are also contributing to lower power consumption, as they adjust their rotational speed according to operating conditions. Furthermore, demand is ramping up for new-generation servo motors, which typically find use in industrial robots as they can rotate forwards and backwards for accurate positioning. These three motor types (high-efficiency, inverter and servo) all rely on one common component to help maximise performance and minimise energy consumption: bearings.

Worldwide endeavours to reduce power consumption have led to regulations requiring motor efficiency improvements. A motor’s energy loss comprises three factors: iron loss (heat generation from the iron core); copper loss (heat generation from the winding); and mechanical loss (due to bearing rotation, for instance). Although mechanical loss can be as small as 1% of motor power consumption, it accounts for 0,4 to 0,5% of global electricity use, which means the worldwide impact of any reduction is significant.

Low-torque bearings for high-efficiency motors

NSK evaluated mechanical loss from bearings using high efficiency motors.

In a two-pole high-efficiency motor running at 3000 rpm, the cause of 80% of mechanical loss was lubrication resistance. Optimising the grease quantity reduced mechanical loss by 60% in comparison with conventional bearings. The low-torque bearing developed by NSK uses special grease, increasing seizure life more than 2,7 times; and NSK’s specially developed plastic cage reduces mechanical loss to half that of steel cages because the plastic cage supresses grease agitation resistance between the cage and balls.

Ceramic-coated bearings for inverter motors

Inverter motors are useful for delivering energy savings in pumps and blowers. The trend is to increase the frequency requiring control (known as the carrier frequency) so that the motor can operate with a higher degree of accuracy. However, as the carrier frequency increases, electrolytic corrosion may occur due to high-frequency current in the bearing. Here sparks generate through the lubricating oil film between the raceway surface and rolling elements, causing local melting and unevenness. This effect also leads to abnormal running noise and seizure.

Some bearings for small motors feature ceramic balls that do not pass a current, to protect against electrolytic corrosion, but there are productivity issues with larger diameter ceramic balls required for medium and large inverter motors. To remediate this, NSK has developed an anti-electrolytic-corrosion, ceramic-coated bearing specifically for use in these inverter motors. The newly developed bearing exhibits excellent electrical insulation, with DC tests showing ten times more insulation than general ceramic-coated bearings. The NSK bearing demonstrates equivalent insulation with an AC power supply, satisfying an impedance of 100 Ω or more at 1 MHz frequency.

In terms of mechanical performance, the impact resistance of the coating is three times that of a general ceramic-coated bearing. Heat dissipation, which is a disadvantage of ceramic coatings, is suppressible using a relatively dense coating compared to that used on conventional bearings, extending both lubricant life and motor life. In tests, the temperature rise during bearing rotation was about 10°C lower than that exhibited by a general ceramic-coated bearing. The dense coating also means fewer voids and better durability.

Low particle emission bearings for servo motors

The precise positioning capability of a servo motor derives from transmitting or reflecting the LED’s light emission signal in the pattern engraved on the encoder plate, and feeding the received signal back to the motor controller. Contaminating the encoder plate’s surface with oil or other matter disables the signal reception and feedback of the position information to the motor controller, preventing regular operation.

In a servo motor for a robot, it is necessary to stop the arm and workpiece via an electromagnetic brake. Contaminating the brake plate with oil or other material causes brake slippage. Servo motors used in industrial robots and cobots must be highly reliable, so bearings should exhibit low particle emission to avoid contaminating the encoders or brakes. NSK has developed a bearing for servo motors that uses a low particle emission grease with optimised composition. The bearing provides excellent contamination protection.

The scattering of grease contamination decreases when using bearings with a non-contact seal and low emission. Furthermore, bearings with LGU grease and the light-contact DW seal show hardly any grease scattering – an effective countermeasure against encoder corrosion.




Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Taking reliability to the trenches
SKF South Africa Motion Control & Drives
SKF’s maintenance-free Y Bearing Unit has significantly extended equipment uptime for key customer Gibela, a leading level 5CE CIBD-rated civils company with more than ten years of experience in the field.

Read more...
Adjustable chocks support extremely large telescope
SKF South Africa Motion Control & Drives
Adjustable chocks from SKF will play an important role in the world’s largest visible/near-infrared telescope, the ELT, which is currently under construction in Chile.

Read more...
Safe handling in all sectors
Bearing Man Group t/a BMG Motion Control & Drives
BMG is committed to ensuring optimum safety standards in all sectors, and encourages and assists customers to adhere to stringent safety legislation during bulk handling. Tsubaki backstops and cam clutches, which have been developed and manufactured in Japan for high efficiency and optimum safety in high- or low-speed applications, meet the requirements of current legislation.

Read more...
Motion control solutions for better machining results
Motion Control & Drives
NSK Europe is shining the spotlight on its latest solutions for machine tools. Innovative NSK bearings, ball screws, and linear guides can deliver significant gains for both machine users and builders.

Read more...
Drive technology for tunnel construction
Motion Control & Drives
Compact, robust, and reliable - these are the advantages of RUD’s Tecdos drive technology, which is a gamechanger in tunnel construction.

Read more...
Modernising for productivity
SEW-Eurodrive Motion Control & Drives
Making its debut appearance at NAMPO Cape in Bredasdorp in September this year, geared motor specialist SEW-EURODRIVE is all set to excite the farming community with even more solutions to drive productivity and efficiency.

Read more...
Cost-effective machine health monitoring
SKF South Africa Motion Control & Drives
The easy to use SKF QuickCollect Bluetooth-enabled, handheld sensor monitors the health of rotating machinery via mobile iOS and Android apps, identifies developing issues, and mitigates potential failures by enabling customers to initiate predictive maintenance.

Read more...
Beer brewers avoid grease contamination
igus Motion Control & Drives
A study by RWTH Aachen University and igus recently quantified the financial and environmental benefits of using lubrication-free polymer bearings over traditional metal bearings. The study revealed that users can save millions of rands annually in lubricant costs, significantly reducing their environmental impact.

Read more...
Supporting the low-carbon steel movement
Motion Control & Drives
With a legacy of pioneering safer, more productive, and sustainable equipment and services, Konecranes is committed to advancing a decarbonised and circular world for customers and society.

Read more...
Harnessing robotics for a sustainable future
Motion Control & Drives
Yaskawa South Africa stands at the forefront of the green revolution, leveraging advanced robotics to drive sustainable manufacturing practices.

Read more...