Editor's Choice


ATEQ in pole position for electric vehicle testing

January 2023 Editor's Choice Maintenance, Test & Measurement, Calibration

Using leak testing in the mass manufacturing of electric vehicles is relatively new, since the transportation industry is accustomed to testing internal combustion engines and turbojets. The drive away from fossil fuels and CO2 emissions has driven the development of new technologies. These new devices present new challenges for production-line leak testing. Testing for leaks in one submarine electric motor or battery system per year, versus leak testing thousands of vehicle motors per day, requires very different testing solutions.

e-Mobility is not for toys and prototypes anymore

e-Vehicles can range from an electric-assisted bicycle, a fully electric motorbike or scooter, a fully electric car or hybrid vehicle, to small electric drones and even large aircraft. ATEQ, with its technical focus and culture of innovation, has found new ways to test these components for mass manufacturing.

The first basic component of every battery is a cell. A battery is a collection of cells. To keep the weight low, battery cells are frequently packaged in flexible pouches. ATEQ has developed a leak test method (patent pending) for testing these pouch cells using ionised air technology. It allows for the testing of pouches, even without evaporating solvent.

The ionised air test can provide a leak test result for the whole pouch and it can also be used to locate the leak’s location in the cell. For metallic body cells, ATEQ also has a test method that detects the evaporation of the solvent. Each battery cell has a semi-permeable membrane that separates the battery’s positive and negative sides. This cell is flow tested prior to assembly to make sure the air flows through the membrane within the designated specifications and that there is not an unexpected hole in the membrane.

Cells can be packaged together in a module with a protective envelope for easy handling. At this stage, the module housing is generally not leak-tight but sometimes a pressure decay leak test is used to test the module housing. Since a group of cells does not reach full charge if the cells are not at an identical charge level, ATEQ has developed a module balancer to even out the charging level of cells during the manufacturing or maintenance process. The cells or modules are packaged together in leak-tight protective housings to protect them against dust, water and mud splashing. Whether it’s the 12 V battery of a classical internal combustion engine vehicle, a small bicycle’s rechargeable battery or a fully electric vehicle-sized battery, the leak tests all function similarly.

Fit-for-purpose solutions

These battery housings and covers are tested for leaks separately before the cells/modules are mounted inside. If the housing is plastic, a differential pressure decay test with noise cancellation technology can be used to test for overall leaks in battery covers. If there is a desire to locate the defect in the cover, an ionised air leak test can be used. If the cover or tray is metal, only pressure decay technology with noise cancellation can be used. To locate leaks on a metal cover, a forming gas (H2N2) leak detection and localisation with ATEQ’s H6000 portable gas-sensitive detector is the solution. ATEQ also proposes to automate this test with a smart holding robot.

Once the battery cells and modules are assembled in the housing, a final leak test needs to be performed. It can be done using pressure decay or air mass flow technology, with very low pressure drop sensors to quickly measure leaks. ATEQ’s patent-pending Differential Noise Cancelling (DNC) technology blocks out background conditions from the leak reading. The housing typically has a semi-permeable membrane that enables the air pressure to equalise with atmospheric and temperature changes. This semi-permeable membrane lets air through, but not water.

ATEQ has an air flow tester to test the breathing patch to ensure it is not double-stacked and that it has not been poked or punctured. The tester can also perform a wet test which puts air over water to detect smaller defects at the sub-assembly level. Some batteries have a check valve instead of a breathing patch to relieve the pressure generated by any gases produced during charging. This check valve is tested with air pressure to look for openings, ‘cracking’ pressure and flow using an ATEQ ERD leak tester.

Some large battery housings can be equipped with a liquid cooling circuit, which is itself tested for leaks with an air tester. For large battery failure analysis, a forming gas sniffer can be used to locate leaks, since air leak tests cannot show leak locations. Gas sniffer leak tests are also useful for troubleshooting potential leaks in a fixture.

The disadvantage of using a tracer gas leak test on large batteries is that the tracer gas can take a lot of time to mix with the atmospheric air inside a battery if there is no tracer gas current across the battery. It is recommended to fully evacuate the atmospheric air from the battery tray or cover prior to pressurising it with tracer gas, since the tray/cover cannot sustain much vacuum. It is also recommended to monitor the tracer gas concentration on multiple sealed openings in the battery to verify that the tracer gas has reached every corner of the battery.

Based on ATEQ’s experience with aviation battery testers, the company can make custom battery testers that charge and discharge an entire battery.

Fuelling the charge

A fuel cell creates chemical energy by combining hydrogen, or any other combustible gas, with oxygen from the air and turning it into electricity for the vehicle.

The fuel-side components are typically tested for leaks with a mix of 5% H2 (hydrogen) and 95% N2 (nitrogen) – known as forming gas. Contrary to pure hydrogen, forming gas is not flammable, and it helps detect defect areas that hydrogen could flow through. The air side is typically tested for leaks with an air pressure decay or mass flow instrument. The fuel cell’s semi-permeable membrane should be tested for air flow, and the vehicle’s cooling system is leak tested with an air tester.

The upstream fuel storage and delivery systems are also tested for leaks, with air or forming gas, depending on the application. The electric motors that operate the wheels are in leak-tight housings that protect the motor against splashing water. A motor housing made of plastic can be tested using ionised air when it is not mounted. If the housing is metal, or fully assembled, it can be tested with air. The motor coil wires are coated with an insulating ‘varnish’. At times, this gets cracked, mainly where the wires are bent. ATEQ has developed a test to detect this defect using ionised air technology.

The latest electric vehicles also come with automated driving assistance that uses sensors to sense the environment. Whether they are cameras, lidar or something else, the sensors are in leak-tight housings since they are exposed to the elements. ATEQ also tests the TPMS (tyre pressure monitoring system) sensors, during wheel and vehicle assembly and for maintenance level. An air leak test is generally preferred to test these sealed sensors.

At times, a car battery cannot sustain a fast enough injection of electrical charge, so the energy has to be stored in a large capacitor to protect the battery. ATEQ has an instrument designed to safely discharge these capacitors before servicing the vehicle.

Electric doesn’t just mean batteries

In addition to the new electric vehicle leak testing applications, it is important to remember that many of the traditional automotive air leak testing applications still exist within an EV, such as brake systems, headlights, taillights, ABS and central computer electronics, steering components and air conditioning systems.

With the accelerating shift toward electric, hybrid electric, plug-in electric, and fuel cell technologies, OEMs must introduce new models to the market quicker than ever to stay competitive. However, this means that vehicle makers will face many new challenges during the manufacturing process, such as the increasing complexity of new vehicles, new technologies not yet fully mastered, and the increased pressure to achieve the highest level of quality to avoid security risks and vehicle recalls.

To address these new challenges, ATEQ offers leak, flow, battery and TPMS testing instruments to ensure the quality testing of numerous components throughout the electric vehicle manufacturing process.

ATEQ application engineers are familiar with existing electric vehicle leak test applications. They also have the capabilities to design a new leak testing solution for an application that has never been leak tested before, backed by hundreds of experienced professionals who are trained in leak testing technologies. With offices and engineers all over the world, ATEQ is able to provide local assistance in developing the perfect quality testing solution for your application.



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Loop signature 22: How cyclical disturbances affect a control loop
Michael Brown Control Engineering Editor's Choice
When tuning noisy loops, we recommend in our courses that one should eliminate the noise by editing it out, so the tuning will be done only on the true process response, free of any noise. The controller is controlling the process, and is not controlling the noise.

Read more...
High-performance motion control for teabag packaging machine
Beckhoff Automation Editor's Choice
Teepak relies on PC-based control and drive technology from Beckhoff to set new benchmarks for speed and precision in its teabag packaging machines.

Read more...
VEGA takes the pressure out of water pressure measurement
VEGA Controls SA Editor's Choice
Water treatment systems in metropolitan areas require careful monitoring and management processes across widespread networks. However, process plants choosing VEGA for their process automation know that the company offers more than just precise and reliable pressure sensors and instrumentation.

Read more...
Advantages of wireless storage tank and container tank level monitoring
Turck Banner Southern Africa Editor's Choice
Implementing a tank monitoring system that utilises ultrasonic or radar sensors in a wireless network has many advantages.

Read more...
Bringing Industry 4.0 to a castings foundry for heavy industries
Editor's Choice
Moving to Industry 4.0 takes time and determination, especially for an established company in a heavy industry. Castings foundry, POK in Mexico has moved toward Industry 4.0 in a series of steps over several years, changing from manual to automated systems for more available, immediate and reliable data.

Read more...
SMOM – the future is here now
Iritron Editor's Choice IT in Manufacturing
In his presentation at the recent MESA Africa conference, Neels van der Walt, business development manager at Iritron, revealed the all-encompassing concept of smart mining operations management (SMOM), and why it is inextricably linked to the future of worldwide mining operations.

Read more...
Navigating disruption in manufacturing
Editor's Choice IT in Manufacturing
When considering IT in manufacturing, the underlying assumption is twofold: first, a wave of valuable maturing technologies can be harnessed to create new business value, and second, the environment in which these technologies will be applied will be relatively predictable, with change following a manageable, evolutionary path. However, recent disruptions have shattered these assumptions.

Read more...
The fascination of movement
Editor's Choice Motion Control & Drives
A motor from Faulhaber provides gentle motion for the finest watches in the world.

Read more...
Complete system for transparent energy monitoring
Beckhoff Automation Editor's Choice Electrical Power & Protection
Transparent energy monitoring reduces both machine downtime and the necessity to oversize the corresponding components. Added to these advantages are simplified preventive maintenance, and increased production efficiency. The wide range of PC-based control technology from Beckhoff offers a solution that can be optimally adapted to individual applications.

Read more...
Iritron’s year of consolidation
Iritron Editor's Choice System Integration & Control Systems Design
Despite the multiple challenges faced by businesses in South Africa, the buoyancy of the technology sector worldwide has produced some green shoots for automation specialist, Iritron.

Read more...