System Integration & Control Systems Design


Another valve with weird characteristics

March 2000 System Integration & Control Systems Design

Figure 1 is the open loop test on the flow loop. It should be noted that as the valve appeared extremely linear with a nice fast response and was hysteresis free, the test was only conducted over a flow range from 33 to 53% and the flow loop was then tuned from this test. A final closed loop test with the new tuning was then performed more or less over the same flow region, and the control was robust and reasonably fast. (Purely out of interest the new tuning was about three times faster than the original 'as found' tune, which is pretty normal as we generally find most loops detuned).

The flow controller was then placed on automatic, and set on cascade-remote setpoint so that the level loop could be tuned. An open loop test was then performed on the level loop which is illustrated in Figure 2.

As can be seen in the figure, when the output of the level controller was raised to about 68% the flow came up nicely to setpoint and then to everyone's amazement began to oscillate.

When something like this occurs, it becomes mandatory to retest the errant loop to determine the reason for the instability, so another open loop test was then performed on the flow loop and can be seen in Figure 3.

This time the steps were made over the complete operating range of the valve. The response of the valve was satisfactory, showing a good linear installed characteristics – until about 68% of the controller output. Here a sudden and huge increase in process gain can be seen, where the valve moved twice as much as it had previously. It then moved as normal on the following step. Apart from this one can see that there is a slight overshoot on the return step from the top going down, which would indicate possible insufficient power in the actuator to easily overcome static frictional forces. This has been called 'negative hysteresis' and it often results in cycling in closed loop control, with the positioner pushing the valve too far each time it reverses. The process gain also increased near the bottom of the range. Since this is in area where orifice flow measurement is completely inaccurate, and valves generally become very nonlinear near the seat, this area is regarded as a 'no go' control area. There is little one can do about it.

The correct thing to do in a situation like this is to try and find out why the valve moved in such a nonlinear fashion in the one area, and to correct it. Alternatively, one could insert a special linearisation table (or curve shaper) in the output path of the controller to correct the nonlinearity. However, in this case the client felt that the loop was not of sufficient importance to waste too much time on it, and preferred to rather retune the flow controller to take care of the instability. To prevent instability in loops with non-linear characteristics, one should always perform tuning in the region of highest process gain. However, it should be noted that the control response would then be slower in regions of lower process gain. The flow loop was then retuned on the largest step. The Protuner analysis and tuning report is shown in Figure 4.

The fastest tune was chosen to try and keep the response in regions of lower process gain from being too slow. The Protuner fast tune allows a gain margin of 8 dB, which is 25% more robust than quarter amplitude damping. However even with this tuning, the flow control tended to oscillate slightly in the upper region with higher process gain. This can be seen in the final closed loop test shown in Figure 5. The first step up shows the response to a setpoint change with the fast tune. The tuning was then changed to the 'slow' parameters and the setpoint then stepped down. It can be seen how the response slowed down as the process variable moved into the region of lower process gain. A further step downwards in setpoint then moved the process into the region of low flow and valve operating very close to seat. As can be seen in Figure 5, the loop then also went into oscillation. Instability in this region is not unusual and one can do nothing about it. It is also not very important in this case, as it is most unlikely that the valve would operate down in this region under normal control conditions. The last two steps of setpoint right up and down, show clearly how the response is nice and fast in the region of higher process gain and slower in the region of lower gain.

One lesson that should be learned from this is never to take linearity for granted, and that one should check the process dynamics over the complete operating range.

Michael Brown is a specialist in control loop optimisation. He can be contacted on telephone (011)486 0567,fax (011)646 2385 or e-mail:[email protected]

[email protected]





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

The time is now for systems integrators
Editor's Choice System Integration & Control Systems Design
Integrators combine sophistication regarding technology innovation with practical, hands-on experience. Collaborating with systems integrators is the means to significant productivity improvement, powered by the convergence of automation and information and operations technology.

Read more...
System integrators are a diverse market
Editor's Choice System Integration & Control Systems Design
System integrators (SIs) combine expertise on emergent technologies with real world experience. Working with SIs, it’s inevitable that at some point someone will say, “We’re not a typical SI.” And in many ways, it’s true. SIs come in all shapes and sizes.

Read more...
Avoiding the pitfalls of PLC and scada control system integration
Iritron System Integration & Control Systems Design
Upgrading your control system by integrating PLCs with scada systems should be a simple seamless process. Regrettably, the industry is plagued with control system integration and upgrade myths and misconceptions that can lead to liability issues, project delays, cost overruns and decreased plant performance.

Read more...
EtherCAT measurement terminals for vehicle development at Mercedes-Benz
Beckhoff Automation System Integration & Control Systems Design
At the Mercedes Technology Centre plant in Sindelfingen, Germany, car axles are examined with the highest precision on four test benches, in parallel with road tests and simulations. All data is acquired using PC-based control from Beckhoff.

Read more...
Loop signature 23: Tuning Part 2.
Editor's Choice System Integration & Control Systems Design
It is my opinion that most tuning methods are very crude. They do of course also offer a starting point for tuning if one is not fortunate enough to have a sophisticated tuning package like a Protuner around.

Read more...
PIC microcontrollers with integrated FPGA features in TME
System Integration & Control Systems Design
The new PIC16F131xx microcontrollers in TME’s offering from Microchip are ideal for the evolving and miniaturising electronic equipment market, offering efficient power management and predictable response times for controllers.

Read more...
Five smart machine trends you need to know
Adroit Technologies System Integration & Control Systems Design
The last ten years have brought about dramatic advances in technologies that OEMs had never realised would affect their designs or the saleability of their machines, much less impact business models and profits so dramatically. The following discussion will cover key advancements and recommendations all OEMs should be adopting in their design processes to stay current and competitive.

Read more...
36 years of innovation and success
SAM Systems Automation & Management Editor's Choice System Integration & Control Systems Design
Systems Automation & Management was established in 1988 at a time when there were no other systems integrators (SIs) in the process business. SA Instrumentation & Control’s editor caught up with managing director, Claudio Agostinetto to find out more about how this thriving company has prospered over the last 36 years.

Read more...
Understanding the role of AI in generative engineering design
System Integration & Control Systems Design
When a design engineer sets out to design a new part, component, or assembly, the intent is to meet the design requirements for fit, form and function, and also incorporate a certain degree of innovation and elegance to the overall design. There is no reason to re-invent the wheel by introducing a new design.

Read more...
PCS stays up so you don’t have to
PCS Global System Integration & Control Systems Design
Maybe it’s time to look at a solution that stays online 99,99999% of the time so you don’t have to. This the world of Stratus computer platforms, tailor-made for your critical applications.

Read more...