Editor's Choice


Control loop: Case History 180 - Fuel gas pressure control problem

November 2021 Editor's Choice

I was recently asked to sort out a serious control problem on a fuel gas pressure control in a refinery. The loop, the cascade secondary loop to the furnace temperature control, is extremely important because furnace temperature is critical in refinery operation.

A cascade secondary control loop with temperature as the primary control usually has to work quite hard with fairly big movements due to temperature processes often being quite slow and requiring ‘hefty’ tuning.

The problem with the pressure control was that it seemed to work intermittently and sometimes was almost unstable. It also seldom got to setpoint, resulting in large and unacceptable variance on the control.

Testing was extremely difficult to perform on this loop as the operators were insistent that only very small changes could be made, as downstream production could be badly affected if things were moved too much. For this reason, we could not make all the steps I would like to have done.

Closed loop test

Figure 1 shows the closed loop test ‘as found’, which is a test performed with the loop on local setpoint and using the original tuning parameters. It shows two things quite clearly, firstly that the loop was almost unstable and secondly, that the response was slower as the setpoint was moved up, which could indicate non-linear installed valve characteristics.

Further tests also showed that the pressure dynamics were behaving in a strange manner that was not reflective of the actual valve movement, with the pressure PV moving around quite considerably when the controller output was constant. It is not clear as to the cause of this, possibly it was a problem in the measurement, but certainly it would be very difficult to try and get reasonable and consistent control with that behaviour.

Fortunately, it was discovered that there was a flow transmitter in the gas line and it was found that this gave a much better indication of the valve’s performance than the pressure. This is shown in the open loop test of Figure 2, where the difference in the behaviour of the two PVs can be seen. It was therefore recommended that the cascade secondary loop should be changed from pressure to flow. Unfortunately, in this plant as in many others, one cannot just change things like a control strategy immediately. Changes must be approved by a committee comprising process control and instrument engineers. Obviously, the loop would have to be retuned if the change is made.

Open loop test

Figure 3 shows an open loop test with the normal type of steps being made on the PD (controller output) and response of the flow PV being shown. The pressure PV was also recorded as it was needed to try and get a better tune to use in the meantime, but that trace has not been shown in the figure for the sake of clarity.

Figure 3 clearly shows that valve problems also existed. These are:

1. The valve movement is very non-repeatable. It sometimes overshot on being reversed and at other times it stuck quite badly on a reversal.

2. Although the steps made on the PD were all of the same size, the valve seemed to move in smaller steps on opening and much larger steps on closing.

3. At times the valve stuck for a while and then eventually slipped.

4. It looked like the installed valve linearity wasn’t too bad, but it is hard to be sure from this test. It certainly looked like non-linearity in the first ‘as found’ closed loop test shown in Figure 1.

5. Comparing the magnitudes of the steps in PV versus those in the PD, the valve is probably 3-4 times oversized. As mentioned in past articles, oversized valves amplify all problems by the oversize factor.

It is almost impossible to get good control with such a valve. It was therefore recommended that the valve be serviced and preferably replaced with a correctly sized one.

Just in passing, it is interesting to note that I optimised the same loop some 11 years previously and on comparing the then and present tests, it was seen that the process dynamics had changed completely. A subject of frequent discussion is how often one needs to reoptimise a control loop. In general, it is very difficult to answer this question as it depends on many different factors.

Online loop monitoring

My own experience is that dynamics do change on most loops over time and varying process conditions and this to me is an argument for the use of a continuous online loop performance monitoring package. These are often used to highlight badly performing loops. I have found that when used alone these packages can detect some bad loop problems, but often cannot show up other faults and are prone to misinterpreting certain types of loop performance. The best way therefore is to individually analyse and optimise each loop. The online packages really only come into their own after the individual loops have been properly optimised, as they can then immediately give warning of any deterioration in loop performance.


About Michael Brown


Michael Brown.

Michael Brown is a specialist in control loop optimisation with many years of experience in process control instrumentation. His main activities are consulting, and teaching practical control loop analysis and optimisation. He gives training courses which can be held in clients’ plants, where students can have the added benefit of practising on live loops. His work takes him to plants all over South Africa and also to other countries. He can be contacted at Michael Brown Control Engineering cc, +27 82 440 7790, [email protected], www.controlloop.co.za


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

The future of industrial automation: fieldbus and industrial networking
LAPP Southern Africa Editor's Choice
As a global leader in integrated solutions in the field of cable and connection technology, LAPP recognises that fieldbus and industrial networking technologies are pivotal in shaping the future of manufacturing and production processes.

Read more...
AI-driven innovations with CCTV and cyber security
RJ Connect Editor's Choice Fieldbus & Industrial Networking
The fast progress of artificial intelligence (AI) and video analytics is redefining the rail surveillance landscape. Advancements have bolstered proactive event detection, predictive maintenance and enhanced situational awareness.

Read more...
Loop signature 27: SWAG tuning of simple integrating processes.
Editor's Choice
The chief control engineer of one of the largest petrochemical refineries in South Africa once sent me an email after a course at his plant. He wrote that he had found the section on SWAG tuning of simple integrating processes one of the most informative of the whole course.

Read more...
Harnessing industrial AI agents for reliable automation
Editor's Choice IT in Manufacturing
The excitement around generative AI (GenAI) has been undeniable, promising wide-ranging changes across industries. However, for those of us in the world of industrial control and automation, the realities of implementing these powerful technologies are a little more nuanced.

Read more...
Futureproof your industrial network security with OT-centric cyber security
RJ Connect Editor's Choice
To achieve digital transformation, industrial operators must first address the daunting task of merging their information technology (IT) and operational technology (OT) infrastructure. In this article, we focus on the importance of strong OT network security and provide some tips on how to strengthen cybersecurity for industrial operations.

Read more...
The symbiotic relationship between OEMs and SIs
Schneider Electric South Africa Editor's Choice System Integration & Control Systems Design
While businesses tend to turn directly to original equipment manufacturers OEMs or vendors when embarking on IT projects, the role of the SI as a key facilitator and partner cannot be overstated.

Read more...
Case History 196: Unstable condensate level control.
Michael Brown Control Engineering Editor's Choice Level Measurement & Control
The operators in a petrochemical refinery were having great trouble in trying to stabilise the condensate level in a vessel, and this was adversely affecting other loops downstream. Several unsuccessful attempts had been made to retune the controller.

Read more...
Big themes for 2025
Editor's Choice News
2024 was a year of unprecedented innovation and global upheaval. As we look ahead, Amy Webb, CEO of the Future Today Institute asks which technologies will reshape our world in 2025?

Read more...
Loop signature: Tuning part 4 processes
Michael Brown Control Engineering Editor's Choice Fieldbus & Industrial Networking
The purpose of this particular article is to try and give those unfortunate enough to have to use SWAG (scientific wild ass guess) tuning a bit of an idea of how to go about it, and even more importantly some understanding of a couple of basic principles.

Read more...
EtherCAT and PC-based control elevate next-generation laser cutting machine
Beckhoff Automation Editor's Choice
Cincinnati Incorporated has been building sheet metal processing equipment for 125 years. Since the switch to PC-based control, the only limits to development have been physical.

Read more...