Editor's Choice


Loop Signatures 7: Final control elements – Part 3 hysteresis and deadband

June 2021 Editor's Choice

Normal hysteresis

Some of the biggest problems associated with the final control element are hysteresis and backlash. These can roughly be defined as the maximum difference obtained in stem position for the same input up-scale and down-scale. A test to measure hysteresis and deadband in a self-regulating loop is illustrated in Figure 1.

Hysteresis is normally caused by the force that appears every time the valve stem is going to be reversed i.e. moved in a direction opposite to the previous direction of movement. Valve experts have described static frictional force as the amount of force needed to bend the end-fibres of the packing material in contact with the valve stem in the new direction of motion. Once the static frictional force has been overcome by energy provided by the motive power of the actuator and the stem actually starts moving, the static friction force disappears and is replaced by a sliding frictional force, which is very much less than the original static friction.

Subsequent equal movements of the valve stem in the same direction will then generally be greater as the static friction has now disappeared and all the energy produced in the actuator now goes directly into moving the valve stem. It only reappears again on the next valve reversal.

Any deadband (mechanical play or backlash) in the mechanisms of the valve, actuator and positioner combination adds to the hysteresis effect when reversing the valve. As a rough rule of thumb based on tests performed on many thousands of valves, a hysteresis value of not more than 1% of valve movement span is acceptable in practice for a pneumatically operated valve fitted with a positioner. This figure increases to 3% if there is no positioner on the valve.

Hysteresis and deadband increase control variance. In the case of self-regulating processes, they increase the time that the controller needs to make corrections for a load disturbance or setpoint change because every time the controller has to reverse the valve, the controller has to move the PD (controller output) through the full hysteresis range before the valve will move in the opposite direction. As this movement of the PD is performed at the integral term ramp rate, which gets less and hence slower, the closer the PV gets to setpoint, it can take a very long time for the process to actually settle out at setpoint.

Figure 2 illustrates this effect on a flow loop with 5% valve hysteresis, responding to a step change in setpoint. The process has taken close on 3 minutes to settle at the new setpoint. If the valve had been hysteresis free, the process would have settled out at the new setpoint in approximately 20 seconds.

It should be noted that hysteresis and deadband do not cause continuous cycling on self-regulating loops.

Integrating loops on the other hand always cycle if there is any hysteresis and deadband in the valve and if the I term is used in the controller. This is illustrated in Figure 3. Thus it is very important that valves used on integrating processes are in good working order, if cycling and increased control variance are to be avoided!

Negative hysteresis

On reversing a valve with normal hysteresis and deadband using equal steps of PD, as was seen in Figure 1, the valve stem does not get back as far as the equivalent position where it was on the step before the reversal. However on certain loops one finds that the stem actually overshoots this position on the return. This is illustrated in Figure 4.

We have named this particular phenomenon ‘negative hysteresis’ and it occurs if a positioner is present. It is a sign of an underpowered actuator that has difficulty in overcoming the static frictional force. (It may be too small, or else the packing glands have been over tightened). The reason for the overshoot is that the positioner, seeing the valve is not moving, starts inputting excessive pressure into the actuator. Eventually there is enough pressure in the actuator to overcome the static friction. However as the static frictional force disappears, the excess energy in the actuator pushes the stem too far.

If it is possible to bypass the positioner and allow the incoming air signal to operate the actuator directly (be careful that the actuator bench set is in fact 20-100 kPa), and then repeat the step test, one would see that the valve now exhibits high normal hysteresis. Figure 5 illustrates such a test carried out on the same valve which showed the negative hysteresis in Figure 4. The normal hysteresis of approximately 10% is unacceptably high.

Negative hysteresis is most undesirable. For good control it is essential that the actuator should have sufficient power to move the valve to any desired position. Loops with valves displaying negative hysteresis tend to be very cyclic in closed loop control. On occasions, I have seen loops displaying this phenomenon going completely unstable and others cycling continuously.

On occasions, the positioners on valves with negative hysteresis manage to correct the overshoot after a while and bring the valve stem back to the correct position. However this may not happen on every occasion and it makes the valve dynamics very non-repeatable. Such behaviour is illustrated in Figure 6. This open loop test was performed on a flow loop in a brewery using a ‘home-made’ oversized butterfly valve, assembled from components purchased from different manufacturers. It can be seen how non-repeatable the responses are.

A closed loop test, shown in Figure 7, illustrates the resulting instability when the controller was put into automatic and a setpoint change made. In general, it is not a good idea for a plant to try and save money by making up its own valves, not if the process personnel want reasonable control.


About Michael Brown


Michael Brown.

Michael Brown is a specialist in control loop optimisation with many years of experience in process control instrumentation. His main activities are consulting, and teaching practical control loop analysis and optimisation. He gives training courses which can be held in clients’ plants, where students can have the added benefit of practising on live loops. His work takes him to plants all over South Africa and also to other countries. He can be contacted at Michael Brown Control Engineering cc, +27 82 440 7790, [email protected], www.controlloop.co.za


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Connecting every transport node
RJ Connect Editor's Choice Data Acquisition & Telemetry
Stockholm's bus system strategically links urban mainline, suburban mainline, non-mainline routes, community service buses and night buses. To acquire and process data from multiple sources and analyse onboard information on their moving buses, Transdev sought a dependable and powerful onboard computer. It teamed up with CatAB, Moxa’s local representative, known for delivering top-notch industrial data communication boards and equipment since 1988.

Read more...
Local range of planetary units
SEW-EURODRIVE Editor's Choice Motion Control & Drives
As SEW-EURODRIVE South Africa actively extends its offerings to customers, the SEW PPK and SEW P2.e industrial gearbox ranges are good examples of solutions that are well suited to the local business environment.

Read more...
Case History 195: Unstable reboiler steam flow
Michael Brown Control Engineering Editor's Choice
A high-pressure steam flow control in a reboiler on a column in a petrochemical refinery continually cycled when placed in automatic. Several attempts had been made to tune the controller, but these had been unsuccessful.

Read more...
Open control system for retrofit of conveyor control system
Beckhoff Automation Editor's Choice
For every online retailer, warehouse logistics is part of the critical infrastructure. An Australian office equipment supplier has retrofitted the warehouse logistics installation of its central warehouse, and replaced the proprietary decentralised controllers of the conveyor lines with PC-based control from Beckhoff, based on powerful EtherCAT communication.

Read more...
Digital industrial platforms and why they are important
Editor's Choice
One of the most significant trends driving digital transformation is the emergence of digital industrial platforms. This article will briefly explore what digital industrial platforms are, why they are important, and how they might shape the future of industrial automation.

Read more...
Celebrating 65 years: rebuilding and redefining its legacy
Editor's Choice News
Founded in 1959 by Neill Simpson, Axiom Hydraulics has grown into one of South Africa’s elite hydraulic companies. Over the past six and a half decades they’ve weathered many challenges, but none as devastating as the fire of 2023.

Read more...
Young robotics team takes world title
igus Editor's Choice News
In an inspiring demonstration of innovation and teamwork, Texpand, a young South African robotics team, recently made history by winning the 2024 FIRST Tech Challenge World Championships.

Read more...
SAIMC: It’s not black and white
SAIMC Editor's Choice SAIMC
Grey imports are a problem worldwide, not least in the automation industry in South Africa. The Supplier Advisory Council (SAC) operates under the umbrella of SAIMC, and is tackling this problem head-on.

Read more...
Loop signature 25: Tuning part 3 - Results of tuning a particular simple self-regulating process by several different methods.
Michael Brown Control Engineering Editor's Choice
A couple of SWAG methods of tuning were given in the previous Loop Signature article. I have tuned a simple self-regulating process using those methods, and two other tuning methods, one of them being the sophisticated Protuner tuning package, which is the system I employ. The tests were performed on a very accurate and powerful simulation package, and the results are compared below.

Read more...
PC-based control for advanced hydrogen storage technology
Beckhoff Automation Editor's Choice PLCs, DCSs & Controllers
The proportion of renewable energies from solar, wind and water is rising continuously. However, sufficient storage options are of the essence to use these energies as efficiently as possible. GKN Hydrogen offers a particularly compact and safe option, low-pressure metal hydride hydrogen storage systems with PC-based control from Beckhoff.

Read more...