IT in Manufacturing


Industrial Machine Learning – it’s AI, just less artificial

May 2021 IT in Manufacturing

Part 1 of this article, published in the April issue of SA Instrumentation and Control, defined Machine Learning and discussed what makes Industrial Machine Learning different. In part 2, aspects of the practical implementation of Industrial Machine Learning are presented. Interested readers can review the full article at https://www.instrumentation.co.za/12850r.

Prerequisites for Industrial Machine Learning (IML)

IML platforms are designed to be easily configurable and to provide rapid return on investment. To unlock this value, however, there are some critical prerequisites one needs to be aware of before one can start implementing IML models. The main requirements for IML are:

• Sufficient instrumentation and data points/variables in place for the machine or process in order to build a relevant machine or process model.

• Sufficient historical data, ideally one year of data, but a minimum of six months – to ‘understand’ or ‘recognise’ the machine or process behaviour patterns.

• The ability to access the historical information to make it available to the IML platform.

IML is best utilised for:

• Critical processes where quality or yield issues only become apparent during subsequent processing and as such lead to waste.

• Critical equipment where unplanned breakdowns cause major production disruption for the whole plant.

• Equipment or processes where safety is a major concern, so preventive measures are required.

• Slow-moving processes where there is sufficient time to react in order to give feedback to the machine to take action before actual anomalies occur.

• Processes and equipment where there is adequate domain knowledge of the process or equipment.

Implementation approach

In order to ensure optimal effectiveness, the creation of accurate IML models is mostly an iterative process. Figure 1 depicts the typical high-level approach when implementing an IML model.

IML in action

To depict IML practically, let us look at an example of a large pump for which we want to detect anomalies for predictive maintenance purposes. To configure a Machine Learning (ML) model for the pump, the process engineer, or manager, will start by selecting all the tags that are relevant to the operations of the pump. These might typically include the inlet and outlet pressures, flowrate, motor speed, liquid temperature, power consumption and vibration level, depending on the available signals and installed sensors.


Figure 1. Machine Learning implementation approach.

Figure 2. Vibration trend of a failing motor.

Figure 3. Motor anomaly score.

Once all of the relevant tags have been selected, the next step is to define the historic time period for the model to ‘train’ on. These periods should typically be six to 12 months of historic data and should be during a period where, for most of the time, the pump was in a ‘normal’ or ‘healthy’ condition. The IML uses an automated, iterative process where the model continuously adapts and tests itself, based on the historic data, to find the right combination of algorithms that are able to ‘predict’ the values with an acceptable degree of accuracy. Most IML platforms automatically define ‘normal’ operations and handle (exclude) outliers and ‘bad-quality’ data.

After the model has been trained within acceptable accuracy, the last step is to configure the production filters (i.e. only monitor when the pump is running) as well as acceptable thresholds for value deviations. The model is then ready for deployment and actively starts to collect and evaluate real-time data coming from the plant.

A classic way of doing predictive maintenance on large rotating equipment such as a pump is to use vibration monitoring. Figure 2 shows the actual values of the vibration monitoring coming from the pump motor in blue, with the ‘predicted’ or expected values displayed in yellow. The scada alarm limit is also shown as the orange line. One can clearly see that the IML tool picked up an anomaly in vibration even though vibration was still below the normal alarm limit.

In this scenario the pump has started to vibrate more than expected, even though the speed, flow and other parameters stayed ‘normal’. The root cause of this behaviour could be mechanical issues inside the pump, mechanical issues outside or surrounding the pump, or it could be the characteristics of fluid going through the pump that changed, to name a few.

The IML model detected a significant difference between the predicted and actual values, as shown in Figure 3 and was able to alarm an anomaly for the operator who would otherwise not have been aware of the impending issue as no scada alarm was raised.

In addition, IML platforms offer drill-down capabilities where operators or engineers can view the alarmed event together with all the associated tag trends within the model, making it easy to identify the cause of the deviation and to decide if the pump needs maintenance or not.

Summary

IML technologies are now more accessible and easier to use. IML platforms are designed to integrate with the most common industrial protocols, historians and scada software to enhance and add even more value to existing systems. With unique and automated data cleaning, IML platforms automatically handle outliers and ‘bad quality’ data, which are common to industrial process data. IML is typically a ‘no-code’ platform that requires no knowledge of ML or data science. The tools are purposefully designed to be used by the people who work in the production environment today. They are built to eliminate the need for code developers, data scientists or expensive external consultants. These solutions give the people closest to the processes the necessary insights to detect anomalies before they occur, optimise production and reduce costs.


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Five data centre trends to watch in 2025
IT in Manufacturing
Any innovation that comes out in 2025 – whether it’s flying cars, highly advanced AI or a breakthrough medical treatment – will be built on the back of an equally innovative IT foundation driven by data. Data that needs to be stored, managed and made accessible in the data centre, in the cloud or at the edge. Is it too much of a stretch to say the future of humankind is dependent on data storage? We don’t think so.

Read more...
Recovering from a cyberattack
IT in Manufacturing
While many organisations have invested heavily in frontline defence tools to try to keep out bad actors, they have spent far less time and money preparing for what happens when the criminals eventually get in. And they will get in.

Read more...
The value of proactive maintenance management
Schneider Electric South Africa IT in Manufacturing
Maintenance has come a long way from the days when we waited for things to break, and thanks to the ever-increasing capabilities of technology, predictive maintenance has become a viable solution for keeping equipment running smoothly and efficiently around the world.

Read more...
Significant decarbonisation can be achieved in the mining industry
ABB South Africa IT in Manufacturing
ABB has released a global report titled ‘Mining’s Moment’, which highlights the progress being made by the mining industry to make operations more sustainable.

Read more...
Pinpointing pipeline occurrences in seconds, not hours
Schneider Electric South Africa IT in Manufacturing
At any given moment, thousands of kilometres of critical assets flow through pipelines that cross veld, mountainous areas, dense forests, and even busy streets. Surprisingly, many of these pipelines operate either unmonitored or with scant oversight, leading to missed opportunities for operational continuity and efficiency.

Read more...
Next-generation AI-enhanced electronic systems design software
Siemens South Africa IT in Manufacturing
Siemens Digital Industries Software has launched the latest advancement in its electronic systems design portfolio. The next-generation release takes an integrated and multidisciplinary approach, bringing a unified user experience that delivers cloud connectivity and AI capabilities to push the boundaries of innovation in electronic systems design.

Read more...
Spatial computing and AI – where no man has sustainably gone before
Schneider Electric South Africa IT in Manufacturing
Some will argue that we now live in a sci-fi world where we dream of electric sheep, and today’s technology – unlike HAL – can provide us with the answers we seek. To the realist it might seem a bit implausible, but when you start using terms like ‘spatial computing realises sustainable AI’ it doesn’t seem that far-fetched.

Read more...
Safeguarding DCS today and tomorrow
Schneider Electric South Africa IT in Manufacturing
Today’s distributed control systems (DCS) are highly intelligent, converging OT and IT in a centralised manner that allows for simplified management and coordination of operations. It is technology evolution at its finest, but with a caveat, cybersecurity challenges.

Read more...
Quantum computing is not as futuristic as it sounds
IT in Manufacturing
The first quantum computer was created almost three decades ago. While its applications are still unknown to many, this advanced field combines computer science, physics and mathematics to deliver solutions the world has been trying to find for aeons – and those it doesn’t yet know it needs.

Read more...
Transform field data into actionable business data
IT in Manufacturing
As part of its ongoing commitment to enhancing industry connectivity, Teledyne Gas & Flame Detection is making its new and proprietary Teledyne GDCloud available with the company´s GS700, GS500 and Shipsurveyor portable gas leak detectors, and also its PS200 portable four-gas monitor for personal safety and confined-space applications.

Read more...