Electrical Power & Protection


Maintaining battery backup systems

November 2020 Electrical Power & Protection

Facilities like data centres, hospitals, airports, utilities, oil and gas facilities, and railways cannot operate without 100 percent backup power reliability. Even standard commercial and manufacturing facilities have backup power systems for their emergency systems, alarms and controls, emergency lighting, steam and fire control systems.

Most backup power systems use an uninterruptible power supply (UPS) and a string of batteries. The UPS backs up the digital control system (DCS) to keep control of plant operations until systems can be safely shut down or until the auxiliary generator kicks in.

Although most batteries used in modern day UPS systems are maintenance free, they are still susceptible to deterioration from corrosion, internal shorts, dry-out and seal failure. This article outlines best practices for keeping these battery banks at optimum performance, so that if an outage does occur the backup is ready.

Top indicators of battery health

Internal battery resistance

Internal resistance is a lifespan test, not a capacity test. Battery resistance stays relatively flat up until the end of life draws near; at that point, internal resistance increases and battery capacity decreases. Measuring and tracking this value helps identify when a battery needs replacing.

Only use a specialised battery tester designed to measure battery resistance while the battery is in service. Read the voltage drop on the load current (conductance) or the AC impedance. Both results will be in ohmic values.

A single ohmic measurement is of little value without context. Best practice requires measuring ohmic values over months and years, each time comparing them to previous values on record to create a base line.

Discharge testing

Discharge testing is the ultimate way to discover the true available capacity of a battery, but can be complicated to perform. In discharge testing, a battery is connected to a load and discharged over a specified period. During this test period, current is regulated, and a constant known current is drawn while voltage is measured periodically. Details of the discharge current, the specified time period for discharge testing, and the capacity of the battery in ampere hours can be calculated and compared to the manufacturer’s specification. For example, a 12 V, 100 amp-hour battery may require a discharge current of 12 A for an eight-hour period. A 12 V battery would be discharged when the terminal voltage is 10,5 V.

Batteries cannot support critical loads during and immediately after a discharge test. Transfer critical loads to a different battery bank until well after the test is complete and then reconnect a temporary, comparably sized load to the batteries under test. In addition, before conducting the test, prepare a cooling system to compensate for a rise in ambient temperature. When large batteries discharge, they release a significant amount of energy as heat.

Healthy batteries should maintain a capacity above 90% of the manufacturer’s rating, while most manufacturers recommend replacing the battery if this falls below 80%. When conducting battery tests, check for these indicators of failure:

• Drop in capacity of more than 10% compared to the baseline or previous measurement.

• 20% or more increase in impedance compared to baseline or previous.

• Sustained high temperatures, compared to baseline and manufacturer’s specifications.

• Degradation in plate condition.

How to conduct standard battery tests

Float voltage: isolate the battery or batteries from the charging system and the load. Measure the individual cell voltage or string using a digital multimeter or battery analyser, for instance on a monthly basis.

Charger output: measure the charger output voltage at the charger output terminals using a digital multimeter or battery analyser, such as the Flukenbsp;500nbsp;Series, on a monthly basis. Observe the output current shown on the charger current meter or use an appropriate DC current clamp meter – measure monthly.

DC float current: refer to the manufacturer’s specifications for approximate values for expected float currents. Use an appropriate DC current clamp meter to measure expected float current on a monthly basis.

Internal ohmic values: use a battery analyser such as the Flukenbsp;500nbsp;Series to measure the individual battery ohmic values on a quarterly basis. Establish reference values and maintain in the battery database.


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Power supply with scalability optimised
Schneider Electric South Africa Electrical Power & Protection
Schneider Electric has introduced the Easy UPS 3-Phase Modular to the South African marketplace. This robust uninterruptible power supply (UPS) is designed to protect critical loads while offering third-party verified Live Swap functionality.

Read more...
Prioritising arc flash safety
Comtest Electrical Power & Protection
Comtest has developed a range of thermal imaging and wireless testing tools from Fluke, designed to ensure safety is the top priority for engineers working in potentially dangerous arc flash zones.

Read more...
Hot Dip Galvanizers Association shines new light on renewable energy
Electrical Power & Protection
The Hot Dip Galvanizers Association of Southern Africa plays an important role in supporting the energy value chain – which spans clean, renewable and green energy – as it powers towards key sustainability targets.

Read more...
ACTOM supplies high-voltage equipment to wind farm project
ACTOM Electrical Machines Electrical Power & Protection
ACTOM High Voltage Equipment is currently in the process of manufacturing 400 kV and 132 kV high-voltage primary equipment for the Ummbila Emoyeni wind farm project in Mpumalanga.

Read more...
Energy measurement module for BL20 I/O System
Turck Banner Southern Africa Electrical Power & Protection
Turck’s BL20 energy measurement module enables precise monitoring of the energy consumption of single- or three-phase systems.

Read more...
Distributed energy resource management systems: a grid symphony
Schneider Electric South Africa Electrical Power & Protection
To listen to a symphony is one of the world’s great gifts. A conductor must ensure that instruments play beautifully as a whole and are kind to the ear and uplifting to the spirit yet shine in their individuality. The same can be said of a DERMS, which must effectively manage diverse energy sources to avoid compromising the grid’s integrity.

Read more...
Focus on energy sector infrastructure development can drive economic growth
Electrical Power & Protection
Post-election periods in South Africa often see a renewed focus on infrastructure development, with a specific emphasis on directing investments towards the energy sector. This strategic approach aims to accelerate economic growth, address energy challenges, and ultimately uplift the overall standard of living for the populace.

Read more...
Turning the continent into a global leader for green fuel
Electrical Power & Protection
Africa is at a turning point, with the potential to shift from being a supplier of raw materials to becoming a leader in advanced manufacturing, particularly in the growing green hydrogen market. For this transformation to happen, African countries must work together, combining their resources and talents to build a strong local economy.

Read more...
Epiroc showcases battery-electric drill rig at MINExpo 2024
Electrical Power & Protection
Epiroc recently showcased a demonstrator of the first ever Down-The-Hole SmartROC D65 battery-electric drill rig at the MINExpo exhibition in Las Vegas.

Read more...
Smart metering for utility management and sustainability
Electrical Power & Protection
Theodore Paraskevakos, a Greek-American inventor and businessman, developed the first smart meters in 1972 while collaborating with Boeing. Since then, smart meters have evolved significantly.

Read more...