Sensors & Transducers


A practical guide to the installation of loadcell weighing systems

8 June 2020 Sensors & Transducers

Loadcells are a key component when it comes to ensuring that the manufacture of consumer goods, food and pharmaceuticals, amongst others, remains accurate and delivers consistent product quality and packaging.

In principle, loadcells are not complex devices, however they do require some special attention when being installed or maintained. Many of these requirements are common knowledge, yet get overlooked during installation and commissioning with direct impact on the accuracy and repeatability of readings from a loadcell system.

The aim of this article is not just to remind users about these, but in addition to question if changes made to the system over time have added any of these items as risk factors to the performance of the current system.

Are loadcells still the best choice for bulk vessel measurements?

Bulk vessel measuring systems have seen some dramatic changes in technology over the past two decades with the development of radar and ultrasonic level measurement devices with increasingly advanced algorithms.

Let’s examine the loadcell requirements in two sets, the first is physical (mechanical) and the second, electrical.

1. Support plates mounting to the loadcell need to be level or planar and the plates below and above the loadcell need to be co-planar.

2. Mounting kits used should be suitable for both the loadcell and the application and be able to compensate for any misalignment of support plates.

3. Support plates must be rigid and non-deformable.

4. Pay attention to the load direction indicated on the loadcell body and install accordingly. Remember that a loadcell can be installed ‘upside down’ as long as the load is applied in the indicated direct direction.

5. Remember that structures with four supports will not distribute the load uniformly and that 90% of the load can easily be distributed on just three of the legs. Keep this in mind when calculating the capacity of the loadcells.

6. Preferably do not exceed 80 % of the loadcell maximum rated capacity with respect to maximum load to be applied, or the designed load area.

7. The freer a structure is the more accurate its readings can be. Make sure that any piping that is connected naturally aligns to the vessel so as not to add strain to it where it is not possible to use free couplings or flexible hoses, which are recommended to ensure free movement.

8. Pipe support structures on pipe sections directly connected to the measured vessel need to be located at least 40 times the diameter of the pipe, away from the vessel.

9. An easy test for correct mechanical installation is to zero the system after installation, apply a load of at least 20% of rated weight, remove the load and confirm that the value returns to zero. Repeat a few times to confirm stability.

10. When using weighing systems with multiple loadcells, it is recommended to place constraints against both lateral and horizontal forces, which allows loadcells to operate correctly avoiding potentially damaging stresses. In bulk vessels, examples include anti-tilt constraints and leg supports. Anti-tilt constraints in outdoor applications where accidental impact from moving vehicles can occur should also be considered, depending on the application environment. Structures with legs need these to be connected to each other or otherwise properly secured to prevent flexing under load, which can cause lateral force on the loadcells.

With all these preparation requirements, it is tempting to give preference to radar or ultrasonic sensors that require only a single hole at the top of the vessel and a few test measurements to get them up and running. In a future article, we will look into the electrical requirements and discuss the niche that loadcells have carved for themselves in the bulk measurement environment.

To learn more about weighing system developments, be sure to join the world’s largest weighing community online at Weighing Systems 4.0 on Linkedin.

Editor’s note: There are a number of diagrams that further illustrate the ideas in points 1-10 above. Due to page constraints these could not be included in print, but interested readers will find them with the online article at www.instrumentation.co.za/10202r


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Inductive IO-Link sensors
Turck Banner Southern Africa Sensors & Transducers
Turck Banner is expanding its sensor range, with inductive measuring sensors with IO-Link and an analogue output for flush and non-flush mounting.

Read more...
Value of PDS grows with data and sensing technology
Sensors & Transducers
Rapidly developing technology is constantly being harnessed by proximity detection systems (PDS) to deliver steadily improved functionality to customers. Booyco Electronics sees improved PDS solutions being developed, such as the combination of multiple different sensing technologies into a single fully integrated solution.

Read more...
Pulp fiction or pulp precision?
VEGA Controls SA Sensors & Transducers
The density of fruit concentrate has a direct impact on the flavour, texture and overall quality of the final product. The VEGA Minitrac 31, VEGASOURCE 31, and the KV 31 mounting bracket present a failproof solution that effectively addresses the technical complexities associated with high temperature, viscosity and fouling.

Read more...
Telco sensors in the pulp and paper industry
Gail Norton Instrumentation Sensors & Transducers
The pulp and paper industry poses a major problem for most photoelectric sensors. The high level of contamination in these dusty, dirty and grimy environments makes it impossible for most competing sensors to operate and sense reliably and efficiently.

Read more...
Vibration monitoring with IO-Link
ifm - South Africa Sensors & Transducers
Machine vibrations are important indicators when it comes to assessing the current condition of a machine. fm’s new and smart IO-Link vibration sensor helps to implement a simple and scalable condition monitoring approach using only a single device.

Read more...
Duct and plant room air quality (PRAQ) sensors
Schneider Electric South Africa Sensors & Transducers
Schneider Electric South Africa offers a comprehensive range of SpaceLogic duct and plant room air quality sensors. These cutting-edge sensors are designed to enhance building air quality and energy efficiency by combining multiple sensing capabilities into a single unit.

Read more...
The sensory reaction of the BMS
Schneider Electric South Africa Sensors & Transducers
Today’s building management systems cannot function properly without sensors. Like our senses, they are an integral part of operations that run silently in the background, almost taken for granted.

Read more...
Leaders in sensor technology
Gail Norton Instrumentation Sensors & Transducers
Photoelectric eyes have always needed perfect working conditions, but in the workplace there is no such thing. Steam, water, light and dirt interfere with most photoelectric eyes, but never with a Telco sensor.

Read more...
A new era in top-notch measurement technology
Senseca Sensors & Transducers
In the ever-evolving world of sensor technology, a new name has emerged that brings a legacy of excellence, innovation and reliability - Senseca. This newly unified brand represents the merger of five industry-leading companies. All have a reputation for delivering top-tier sensor solutions, and have made significant contributions and set high standards in their respective industries.

Read more...
Playing autoclave roulette
VEGA Controls SA Sensors & Transducers
Autoclaves ensure the sterility of medical and pharmaceutical products before reaching healthcare providers and their patients. To effectively manage these demanding conditions, VEGA provides reliable solutions, specifically the VEGAFLEX 81 and VEGABAR 83 sensors, which are designed to meet the stringent requirements of autoclave operations.

Read more...