IT in Manufacturing


Industrial cybersecurity risk assessment and management

Technews Industry Guide: Industrial Internet of Things & Industry 4.0 IT in Manufacturing

Since the acceptance of the various IEC62443 modules as national standards: SANS62443-2-1/4, SATS62443-1-1 and SATR62443-3-1, there has been confusion about the requirements, methodologies and implementation. In this we are not unique as similar confusion reigned when ISA99 (the precursor of the IEC standard) was introduced internationally.

Two aspects are causing particular concern:

• Implementation of a cybersecurity management system (CSMS).

• Risk assessment.

In the case of the CSMS, there are extensive application notes and papers available. This article addresses the second and arguably more frustrating aspect.

The rationale behind risk assessment

SANS62443-2-1:2016 indicates that the risk analysis should consist of two aspects. The first is the rationale that covers situation/risks specific to the business. The second is the risk identification, classification and assessment with section 4.2.3 detailing all the requirements, and this is exactly where most of the confusion arises. Once one analyses the requirements it can be condensed into the following key outcomes:

• A risk assessment methodology must be selected – it is not prescribed.

• A high level risk assessment is required.

• A detailed risk assessment is required after the high level assessment and prioritisation.

• The methodologies do not need to be the same.

• Periodic reassessment is required.

Unfortunately, in South Africa very few operators of industrial plants actually implement the risk assessment process for cybersecurity, and those that do, almost never go into the detailed assessment requirements. As will be explained, there are good reasons why both must be done.

The high level assessment establishes the baseline and should deliver the following outcomes:

• Establishing the ‘real estate’ – this means what equipment is being used/affected and having as much detail as possible.

• Get general information around vulnerabilities and support status of xthe equipment.

• Determine management/process gaps through an evaluation process. Addressing these gaps (policies, procedures training etc.) is not part of the risk assessment process and is typically handled by a separate team.

• Do preliminary system segregation (this is on a theoretical not actual implementation level).

• Determine the target SL (security level) per zone.

• Do preliminary prioritisation of zone security implementations.

There are numerous tools available to do this assessment and selection is very dependent on the type of industry. Both this and the detailed assessment require a comprehensive team to complete successfully. The SL determination is critical as it determines the minimum level of security controls that must be put in place. Since there are always limitations on security budgets, the prioritisation allows one to focus on the zones with the greatest impact.

A security zone will typically contain two or more systems. The detailed assessment allows for lower level prioritisation, specifically:

• System priority.

• Specific vulnerability priority.

Three steps to a structured approach

Unfortunately, unlike the high level assessment there is no single software tool to address the process and one needs to use a variety of tools and systems together, check and verify the information. It is also an iterative process where certain steps might have to be repeated multiple times as new information is uncovered. Much of the information gathered in the high level assessment will be reused. Detailed discussion of the process falls outside the scope of this article; however, Proconics uses a NIST800-82R2-based process that is shown below. It consists of three phases with sub steps in each.

Stage 1 – asset ID and characterisation: define business objectives (business rationale in SANS62443); system classification; asset ID; network topology and data flow; and risk pre-screening (optional).

Stage 2 – vulnerability and threat modelling: security policy review; standards audit and GAP analysis; industrial cyber vulnerability assessment; threat assessment; attack vector assessment; risk scenario creation; and scenario validation (optional).

Stage 3 – risk calculation and management: calculate quantitative (monetary/safety) risk; prioritise mitigation; and mitigation validation (optional).

In conclusion, it can be seen that while the SANS62443 suite can be daunting, if one follows a structured and complete approach it is possible to manage risks. The process described here is not perfect and will not guarantee a fully secured plant, but it does allow for continuous and incremental improvement in security deployment.

For more information contact Cobus Pool, Proconics, +27 17 620 9600, [email protected], www.proconics.co.za



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

South Africa’s AI revolution is here – but are we secure?
IT in Manufacturing
South African businesses are sprinting to embrace generative AI, lured by its potential to drive efficiency, productivity and innovation. But here’s the stark reality: without a rock-solid cybersecurity foundation, AI will become a Trojan horse, opening the floodgates to sophisticated cyber threats.

Read more...
Black Rock Mining centralises mining operations with AVEVA
IT in Manufacturing
Black Rock Mine Operations replaced and upgraded its existing infrastructure, and installed additional capacity to expand production from 3 to 4,6 million tons in three years. The new system is powered by a suite of AVEVA solutions.

Read more...
Shaping data resilience strategies with AI and hybrid cloud solutions
IT in Manufacturing
In today’s rapidly evolving digital landscape, organisations are under growing pressure to secure their operations against increasingly sophisticated cyberthreats, including those that leverage AI to enhance the success rate of attacks. In this landscape, it has become essential to ‘fight fire with fire’ – harnessing AI as a means to counter these threats.

Read more...
Cloud or on-prem? Decoding the choices for South African enterprises
IT in Manufacturing
The debate between on-premise and cloud computing architectures remains a prominent topic among businesses, particularly in South Africa.

Read more...
Advancements in wire rope testing
IT in Manufacturing
Being able to get instant, real-time and portable detection of wire rope flaws can make a significant difference for operational teams. There have been a number of significant technological advancements and tools entering the market that help wire rope operators detect and resolve problems faster.

Read more...
Quantum computing power: four steps to protecting your business
IT in Manufacturing
Are you ready for Q-day? Post-quantum cryptography isn’t just an IT issue, it’s a business continuity concern. Quantum computing is fast becoming a reality.

Read more...
Schneider Electric relaunches legacy access control systems
Schneider Electric South Africa IT in Manufacturing
Schneider Electric South Africa has relaunched its comprehensive access control platform to help customers upgrade from ageing and obsolete systems.

Read more...
Digitalisation in mining - the advantage you need now
Schneider Electric South Africa IT in Manufacturing
Digitalisation offers immense and proven benefits such as streamlining operations, reducing error and accelerating workflows. Mining operators today leverage digital technologies to improve efficiency, sustainability and very importantly, safety.

Read more...
The shape of water – automating hydropower operations
Schneider Electric South Africa IT in Manufacturing
Hydropower is undoubtedly one of the building blocks of today’s renewable energy industry and its operations need to be efficient, reliable and sustainable. Automation must therefore form part of today’s modern hydropower operations to improve resource management and enhance reliability.

Read more...
What lies beneath – the hidden cost of AI
Schneider Electric South Africa IT in Manufacturing
The world is quickly realising that with the rapid advancement in AI there are also caveats. In short, apart from environmental implications, it also has major significant financial ramifications.

Read more...