IT in Manufacturing


Faster results with a digital twin

April 2019 IT in Manufacturing

High tech company Grenzebach’s portfolio includes the simulation of material flow in complex plants in the glass industry. To achieve this, Grenzebach uses Siemens’ simulation solutions. Together, the two companies have developed the most recent product from Grenzebach, the tin-air speed stacker, a machine for stacking all types of glass sheet. This expertise has produced a Siemens digital twin for the first time, as well as the motion control. This allowed all the functions and permutations of the stacker to be simulated while simultaneously developing the initial motion control program to provide an optimum starting point for virtual commissioning. By running what were previously sequential development steps in parallel, it was possible to reduce both development times and costs significantly.

The tin-air speed stacker is a three-axis rapid stacker which can selectively pick up glass sheets from the tin side or the air side and rapidly place them vertically on a glass rack – up to 20 times a minute. This represents a 30% improvement in stacking performance and makes the tin-air speed stacker the most powerful stacker in its class. The motion control is provided by a Simotion D445 motion control system with the Handling Advanced universal library as well as Sinamics S120 modular converters and Simotics S servomotors. Grenzebach was venturing into completely new ground with this development. “In order to get to grips with the potential singularities of the kinematics, which were similar to those found in articulated robots, we decided to build a digital twin for the first time,” explains Roland Jenning, head of Innovation at Grenzebach.

Erring on the side of caution

The digital twin was produced using the NX Mechatronics Designer software from Siemens PLM Software. The initial motion control programs were created at the same time as the digital twin, which reduced the development time and time to market significantly. To make the simulation of the programmed movements in the digital twin as close to reality as possible, Grenzebach chose a ‘hardware in the loop’ design in which the control is connected to the kinematic modal in NX via a Simit simulation unit. The program is then tested using the Simotion Scout engineering system; Simit picks up errors and highlights weak points. This allows processes to be optimised long before the first actual commissioning. However, this is not the end of the digital twin’s usefulness. Future modifications to the plant or changes to the product can be played out virtually in advance and checked for errors without disrupting continuous operation.

For more information contact Kaylin Pather, Siemens Digital Factory and Process Industries and Drives, +27 11 652 3652, [email protected], www.siemens.co.za



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Fortifying the state in a time of cyber siege
IT in Manufacturing
In an era where borders are no longer physical, South Africa is being drawn into a new kind of conflict, one fought not with tanks and missiles, but with lines of code and silent intrusions. The digital battlefield is here, and cyber space has become the next frontier of conflict.

Read more...
Levelling up workplace safety - how gamification is changing the rules of training
IT in Manufacturing
Despite the best intentions, traditional safety training often falls short, with curricula either being too generic, too passive, or ultimately unmemorable. Enter gamification, a shift in training that is redefining how businesses train for safety and live by those principles.

Read more...
Reinventing data centre design: critical changes to meet surging
Schneider Electric South Africa IT in Manufacturing
AI technologies are pushing the boundaries of what is possible which, in turn, is presenting data centres with a whole new set of challenges. Fortunately, several options are emerging which include optimising design and infrastructure for efficiency, cooling and management systems

Read more...
Watts next - can IT save the planet
IT in Manufacturing
The digital age’s insatiable demand for computing power has collided with an urgent and pressing need for sustainability. As data centres and AI workloads consume unprecedented energy, IT providers are pivotal in redefining how technology intersects with environmental stewardship.

Read more...
South Africa’s digital revolution:
IT in Manufacturing
South Africa stands at a pivotal moment in its technological evolution, poised to redefine itself as Africa’s leading digital powerhouse. Over the past two years, political leaders and media narratives have painted a picture of rapid digital transformation, underscoring the government’s ambition to position South Africa at the forefront of innovation.

Read more...
Smart manufacturing, APC and the SA marketplace
Schneider Electric South Africa IT in Manufacturing
Manufacturers are prioritising the integration of smart technologies into their daily operations to stay one step ahead of the competition. In South Africa, some experts believe the country has the potential to leapfrog its global peers through the creation of smart factories.

Read more...
Schneider Electric’s Five-Pillar Strategy takes the guesswork out of equip
Schneider Electric South Africa IT in Manufacturing
Schneider Electric’s Field Service Cycle, otherwise known as the Five-Pillar Strategy, is a structured approach to managing the lifecycle of equipment to prolong asset lifespan while reducing the total cost of ownership for customers.

Read more...
Enhancing operational safety and efficiency through advanced risk-based modelling
IT in Manufacturing
Now, more than ever, capital and operational cost can be reduced while enhancing operational safety and increasing production uptime by applying transformative methods such as Computational Fluid Dynamics modelling.

Read more...
Laying the groundwork in IT/OT
IT in Manufacturing
In the realm of manufacturing, the core mandate is to deliver value to stakeholders. For many in the industry, this is best achieved through a risk-averse approach. Only upon establishing a robust foundation should a business consider venturing into advanced optimisation or cutting-edge technological innovations such as industrial AI.

Read more...
Looking into the future of machine vision
Omron Electronics IT in Manufacturing
Artificial intelligence (AI) is driving a significant transformation in all areas of industrial automation, and machine vision is no exception. Omron’s AI-powered machine vision systems seamlessly integrate state-of-the-art algorithms, enabling machines to analyse and interpret visual data meticulously.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved