IT in Manufacturing


Safe landing every time

Technews Industry Guide: Industrial Internet of Things & Industry 4.0 IT in Manufacturing

The Brazilian Aeronautics Institute of Technology (ITA) is involved in training, research and technological development in the field of aeronautics. The ITA attaches particular importance to fostering links between research and industry and works in close cooperation with the Brazilian Government to ensure that research aligns as closely as possible to the needs of industry. Issues currently in the spotlight are brake system performance and anti-skid technology in normal and failure modes. To play through possible scenarios, the ITA relies on the use of simulation software from the Siemens PLM Software Simcenter portfolio. This allows students at the ITA to gather experience with the latest features of the advanced simulation setup during their course training. Quite apart from this benefit, ITA has also been able to speed up the evaluation of brake system performance under failure conditions, helping to strengthen Brazil’s position in the highly competitive aeronautical industry.

Aircraft brake systems are not only highly complex but also crucial to aircraft safety. The blocking of brakes during braking manoeuvres, for instance, must be avoided at all costs.

Traditionally, brake system performance has always been tested by executing multiple load rig tests and test flights. This is time-consuming and also a costly process, which explains why the research team at the ITA set about looking for a new method that would involve simulation of the aircraft’s hydraulic brake system. A study carried out by the ITA demonstrated the usefulness of system simulation to design and validate the model of a hydraulic brake system in order to assess functionality in both normal operation and in the event of a failure. The experts at the ITA used the LMS Imagine.Lab Amesim from Siemens PLM Software to model the hydraulic system.

Computational parameterised model

The researchers at ITA decided to base their study on a braking system supplied with power by the aircraft’s own hydraulic power generation system. This system is later duplicated to independently provide hydraulic power to each brake. The model generated in LMS Amesim is composed of three elements: the valve assembly, the brake assemblies and the input blocks. “LMS Amesim is a great tool for quickly creating system models, mainly due to its facility for dealing with the physical blocks found in its software libraries,” says Mario Maia Neto, a PhD candidate at ITA. As he explained, this enabled the creation of complex models without the need to write entire mathematical formulas for each subsystem. Using LMS Amesim helped ITA develop a computational, parameterised model for the aircraft hydraulic brake system to assess the behaviour of its relevant variables in normal operational conditions, as well as when typical failures are simulated.

Potential far from exhausted

Subsequently, the results were compared in order to find a way of compensating for the loss of performance in the ‘failure mode’. The last step of this computational method was to devise a strategy or actions such as the definition of specific maintenance tasks to maintain the required system level. Neto envisages enormous potential for the new methodology. “In the current context, modelling and simulation has the potential to improve the execution of several design development activities, such as system architecture study, requirements validation, performance analysis and optimisation, safety and assessment, fault detection and diagnosis,” he concludes.

Using LMS Imagine.Lab Amesim from Siemens PLM Software, the experts at the ITA are able to quickly and simply generate a virtual model of a hydraulic aircraft brake system. The model – composed of the valve assembly, brake assemblies and input blocks – is used to analyse brake system performance and anti-skid technology in the normal and failure modes. The brake’s normal torque response can then be directly compared to braking behaviour in the simulated failure mode.

For more information contact Jennifer Naidoo, Siemens Digital Factory and Process Industries and Drives, +27 (0)11 652 2795, [email protected], www.siemens.co.za



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Five data centre trends to watch in 2025
IT in Manufacturing
Any innovation that comes out in 2025 – whether it’s flying cars, highly advanced AI or a breakthrough medical treatment – will be built on the back of an equally innovative IT foundation driven by data. Data that needs to be stored, managed and made accessible in the data centre, in the cloud or at the edge. Is it too much of a stretch to say the future of humankind is dependent on data storage? We don’t think so.

Read more...
Recovering from a cyberattack
IT in Manufacturing
While many organisations have invested heavily in frontline defence tools to try to keep out bad actors, they have spent far less time and money preparing for what happens when the criminals eventually get in. And they will get in.

Read more...
The value of proactive maintenance management
Schneider Electric South Africa IT in Manufacturing
Maintenance has come a long way from the days when we waited for things to break, and thanks to the ever-increasing capabilities of technology, predictive maintenance has become a viable solution for keeping equipment running smoothly and efficiently around the world.

Read more...
Significant decarbonisation can be achieved in the mining industry
ABB South Africa IT in Manufacturing
ABB has released a global report titled ‘Mining’s Moment’, which highlights the progress being made by the mining industry to make operations more sustainable.

Read more...
Pinpointing pipeline occurrences in seconds, not hours
Schneider Electric South Africa IT in Manufacturing
At any given moment, thousands of kilometres of critical assets flow through pipelines that cross veld, mountainous areas, dense forests, and even busy streets. Surprisingly, many of these pipelines operate either unmonitored or with scant oversight, leading to missed opportunities for operational continuity and efficiency.

Read more...
Next-generation AI-enhanced electronic systems design software
Siemens South Africa IT in Manufacturing
Siemens Digital Industries Software has launched the latest advancement in its electronic systems design portfolio. The next-generation release takes an integrated and multidisciplinary approach, bringing a unified user experience that delivers cloud connectivity and AI capabilities to push the boundaries of innovation in electronic systems design.

Read more...
Spatial computing and AI – where no man has sustainably gone before
Schneider Electric South Africa IT in Manufacturing
Some will argue that we now live in a sci-fi world where we dream of electric sheep, and today’s technology – unlike HAL – can provide us with the answers we seek. To the realist it might seem a bit implausible, but when you start using terms like ‘spatial computing realises sustainable AI’ it doesn’t seem that far-fetched.

Read more...
Safeguarding DCS today and tomorrow
Schneider Electric South Africa IT in Manufacturing
Today’s distributed control systems (DCS) are highly intelligent, converging OT and IT in a centralised manner that allows for simplified management and coordination of operations. It is technology evolution at its finest, but with a caveat, cybersecurity challenges.

Read more...
Quantum computing is not as futuristic as it sounds
IT in Manufacturing
The first quantum computer was created almost three decades ago. While its applications are still unknown to many, this advanced field combines computer science, physics and mathematics to deliver solutions the world has been trying to find for aeons – and those it doesn’t yet know it needs.

Read more...
Transform field data into actionable business data
IT in Manufacturing
As part of its ongoing commitment to enhancing industry connectivity, Teledyne Gas & Flame Detection is making its new and proprietary Teledyne GDCloud available with the company´s GS700, GS500 and Shipsurveyor portable gas leak detectors, and also its PS200 portable four-gas monitor for personal safety and confined-space applications.

Read more...