Motion Control & Drives


Drives and motors in automotive test rigs

September 2017 Motion Control & Drives

Test rigs are used extensively in the automotive and aerospace industries to test a variety of vehicles. AC variable speed drives are very well suited to test rig applications as they can be used to simulate real conditions in a highly dynamic, accurate, linear and repeatable way. They are very responsive and can stop and start quickly to replicate high speed events. Regenerative drives are also often used, so that the drive is able to regenerate electric power when the motor is absorbing energy or providing a load, returning this energy to the supply and reducing operational costs. All drives used in these applications should be optimised for energy efficiency and high control precision, with low ripple voltage and current. Excellent torque response is vital, because drives are often used as torque amplifiers, so the time from the torque reference to the torque on the motor shaft needs to be minimised.

The chassis dynamometer

The most common types of automotive test rig are chassis dynamometers, engine dynamo-meters and transmission rigs. Chassis dynamometer testing usually employs one drive and motor per test unit axle or wheel, depending on the type of testing being performed.

CP Engineering manufactures engine and chassis dynamometer test systems, transmission test systems and other test rigs for the automotive industry. The analog interface of CP’s Cadet Windows-based control and datalogging system is synchronised to the drive’s closed loop vector control. The test systems require real-time control and processing, precisely synchronised to give the same load/speed profile as a real vehicle. The response of the control loop must thus remain consistently within a given cycle time, typically 3,25 ms. The drive also has to be capable of motoring to simulate over-run conditions.

Cranking software provides protection for the drive shaft. As the engine fires and accelerates, the drive switches to zero torque to simulate engine idling. This cannot be done with conventional dynamometers.

Rolling road and brake test stands

Here, different test profiles and tracks are simulated and pre-programmed to reproduce driving resistances as realistically as possible, including braking, startup, driving round bends, cross-country and offroading. Internal and safety-related vehicle functions such as ABS and EPS are also tested. Through fast response compensation, highly accurate and reproducible measurements are obtained by taking into account the friction, electrical and thermal dependencies and moments of inertia over the entire powertrain.

Engine test stands

Drive systems are used in engine test stands, both in development centres and in motor manufacturing. The key is to simulate everyday operating conditions accurately. There are specific requirements for the quality assessment of combustion and electric engines, such as different test patterns and speeds, torque and counter torque cycles, endurance tests or short-term loads.

Frequency converters can accurately create the required torque curve, while also recycling the energy generated in the combustion engine, thereby sparing the electrical mains supply from sinusoidal mains currents. Test engineers can also subject the test sample to specific speeds and torques that expose resonances and technological limits.

Transmission/gearbox test stands

Here, the torque pulses and running characteristics of an internal combustion engine are applied to the transmission/gearbox being tested. By networking all drive controllers on real-time Ethernet, the necessary synchronisation of the inverter current and speed control circuits ensures that the test results reflect real conditions. This avoids the need for unwanted balancing adjustments in the control system.

Power electronics serve as input and output drives for a wide variety of transmission/gearbox types. Four load machines replace the wheel/road system and represent the driving profile, while an input drive simulates the internal combustion engine. Engine Torque Pulsation Simulation (ETPS) recreates the internal combustion engine on a development test stand. To meet the high requirements for this type of test stand, low mass inertia permanent magnet synchronous motors and asynchronous motors are used.

Testing equipment for electric vehicles

New developments require new testing techniques. The power train on hybrid and electrically powered vehicles, comprising the vehicle inverter, motor/engine and transmission/gearbox, can be tested as a complete system, connected in a common DC bus configuration which allows regenerated power (during braking for instance) to be recirculated. For a given installed motor power, this means that the grid connected inverter’s power rating is minimised, saving capital as well as energy costs. A key feature of the system is that all control loops are synchronised, which significantly reduces the risk of system resonances.

For more information contact Ryan Chetty, Nidec Industrial Automation Southern Africa, +27 (0)11 462 1740, [email protected], www.nidecautomation.com



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Medium voltage drive for enhanced energy efficiency and process optimisation
Schneider Electric South Africa Motion Control & Drives
Schneider Electric South Africa has unveiled its cutting-edge Altivar Process ATV6100 medium voltage (MV) drive range, designed to enhance energy efficiency and operational reliability across various industries.

Read more...
Powerful high-precision hexapod
Motion Control & Drives
With the HEX150-125HL, Aerotech is launching the latest generation of its hexapod technology. The compact six-axis positioner combines precise movements with high load capacity and simple integration.

Read more...
Servicing the electric motor sector
Motion Control & Drives
Hexagon Electrical has expanded its manufacturing and service capabilities to meet the growing demand for customised, high-performance specialised electric motors in heavy engineering, and hazardous industrial and mining applications.

Read more...
Control system for deep antenna
Rockwell Automation Motion Control & Drives
When a major university in South Korea set out to build a 21-metre deep space antenna, the researchers needed a control system that could track celestial objects with pinpoint accuracy, a level of precision they thought was out of reach. By partnering with Rockwell Automation, they discovered that the right technology and support could turn their vision into reality.

Read more...
Manufacturers should go PFAS-Free
igus Motion Control & Drives
igus continues to develop engineered plastics that are free of per- and polyfluoroalkyl substances (PFAS-free) in response to mounting evidence of severe environmental and health hazards caused by the chemicals.

Read more...
South African paper producer partners with ABB
Motion Control & Drives
Neopak, a leading manufacturer of containerboard and paper products, has renewed its partnership with global technology company, ABB to upgrade the existing automation system at its Rosslyn Paper Mill in Pretoria.

Read more...
ABB supplies electromagnetic stirrer to world’s largest electric arc furnace
Motion Control & Drives
ABB has secured an order from Çolakoglu Metalurji. for an ArcSave electromagnetic stirrer to be installed on one of the world’s largest electric arc furnaces (EAF)

Read more...
Compact, powerful and green mini-picker
Motion Control & Drives
SkyJacks has introduced Jekko’s Mini Picker to the southern African market. This is a compact, highly versatile and environmentally friendly electric mini-picker that is set to redefine lifting capabilities across multiple industries.

Read more...
Redefining industrial lifting
Motion Control & Drives
The Konecranes S-series hoist redefines industrial lifting through its integration of a ground-breaking synthetic rope with smart features, a lifting capacity of 20 tons, and the ability to adapt to diverse girder configurations.

Read more...
Bühler drives innovation in agriculture and food processing
Motion Control & Drives
NAMPO 2025 is set to be one of the most significant agricultural events in southern Africa. It provides a unique platform for Bühler to showcase its advanced solutions that are designed to improve efficiency, sustainability and profitability in the agricultural sector.

Read more...