Analytical Instrumentation & Environmental Monitoring


Water quality monitoring

September 2000 Analytical Instrumentation & Environmental Monitoring

Traditionally it has been acceptable to filter raw water to a reasonably good clarity (0,5 to 1,5 NTU) and then disinfect the water with chlorine, UV radiation or ozone to kill all the bugs.

In the past any of the reasonably good turbidity instruments were adequate for the analysis of drinking water. Softdrink bottling companies, however, further filtered this commercial drinking water prior to using it to produce soft drinks. This generated a requirement for more sensitive, accurate, repeatable and measurement stable analysers.

A new threat to the safety of water supplies, namely protozoal pathogens, has emerged in the last 20 years. The protozoan parasites Giardia and Cryptosporidium, also found in South African waters, have become a recognised cause of diarrhoea in humans and are life threatening to the immuno-suppressed, the very young and old people.

Certain unique characteristics of Protozoan cysts and oocysts contribute to the fact that they are recognised as the main causes of waterborne parasitic diseases.

* The unique structure and composition of these cysts and oocysts renders then resistant to disinfectants such as chlorine. The only sure way to destroy them is to boil the water for more than 2 minutes at +65°C or freeze them to -10°C.

* Their size (less than 10 mm) makes it difficult to detect or to physically remove (an exceptionally good filtration system can filter them out).

* Bacterial indicators traditionally used are inadequate to detect their possible presence (sophisticated fluorescence microscopes are typically used).

Since 1983 there have been at least 69 major outbreaks of waterborne/foodborne cryptosporidium parvum.

In 1993 there was an outbreak of cryptosporidium in Milwaukee (hometown of GLI) which infected 403 000 people. The suspected cause was 'treatment deficiencies of lake water'. GLI was able to demonstrate to the local water authorities that by using the GLI low range turbidimeter system (LRTS), they could have an advance warning of the possible presence of protozoan parasites in their filtered water. This has led to sales in excess of 10 000 LRTS units to water treatment authorities worldwide.

Continuous turbidity monitoring is one of the best ways to detect changes in water quality. The GLI LRTS has its zero electronically checked once every minute and is sensitive to particle sizes smaller than 10 mm. Analysers using a different technology would regard this size of particles as a dissolved solid and not be able to sense their presence.

LRTS technology

This system uses a patented four-beam method of two light sources and two photodetectors spaced at 90° intervals around the sample chamber. Two measurement phases provide four independent measurements from two light sources. During phase 1, photodetector #2 provides a 90° scattered light active signal, while photodetector #1 provides a forward scattered light reference signal. During phase 2 the process is reversed.

The microprocessor uses a ratiometric algorithm to calculate the turbidity value from the four readings.

This method mathematically cancels the error effects from aging or fouling of the components, and compensates for colour effects. The turbidity system therefore only requires calibration to conform to regulatory requirement, and for this purpose a patented glass calibration cube, certified to a known US EPA approved formazin standard, is available. This extremely stable standard ensures reproducibility of calibration and measurement accuracy.



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Ensuring clean and safe water
Endress+Hauser South Africa Editor's Choice Analytical Instrumentation & Environmental Monitoring
Endress+Hauser’s comprehensive range of disinfection sensors is designed to monitor and control disinfectant levels in water treatment processes.

Read more...
High-precision measurement of insulating gases
WIKA Instruments Analytical Instrumentation & Environmental Monitoring
WIKA has launched the next generation of its GA11 gas analyser. It enables switchgear operators, manufacturers and maintenance companies to record the quality of SF6 gas and alternative insulating gases.

Read more...
Say goodbye to missed contamination with real-time colour monitoring
Analytical Instrumentation & Environmental Monitoring
Applied Analytics offers seamless and rapid colour monitoring in processes with an industry-proven analyser that quickly and accurately monitors colour in your sample stream for impurities and inconsistencies.

Read more...
Metrology laboratory is the heart of data-driven production consistency
Analytical Instrumentation & Environmental Monitoring
Pressing and welding have been at the core of Tier 1 automotive supplier, Malben Engineering for 50 years; but it is the company’s investment in its state-of-the-art metrology laboratory which has set it apart.

Read more...
Unlocking precision: The future of inline concentration measurement
Analytical Instrumentation & Environmental Monitoring
[Sponsored] In today’s resource-conscious industrial world, manufacturers are under growing pressure to optimise productivity, ensure consistent product quality and minimise waste. One of the most effective levers for achieving these goals lies in mastering concentration measurement, and Anton Paar is redefining how it is done.

Read more...
High-precision measurement of insulating gases
WIKA Instruments Analytical Instrumentation & Environmental Monitoring
WIKA has launched the next generation of its GA11 gas analyser. It enables switchgear operators, manufacturers and maintenance companies to record the quality of SF6 gas and alternative insulating gases.

Read more...
Smart sensors for cleaner, safer food and beverage processes
Instek Control Analytical Instrumentation & Environmental Monitoring
Instek Control specialises in advanced measurement solutions tailored for the food, beverage, pharmaceutical and mining industries. Among the company’s offerings are advanced process sensors from Anderson-Negele, as well as ALVIM biofilm monitoring technology.

Read more...
Elevating mining separation processes through precision instrumentation
Endress+Hauser South Africa Analytical Instrumentation & Environmental Monitoring
In mining operations, the quest for efficiency and productivity is key. There is an urgent need for innovative solutions to enhance the performance of extraction processes while balancing operational costs and environmental impact.

Read more...
Alfa Laval launches next generation
Analytical Instrumentation & Environmental Monitoring
Alfa Laval has launched Clariot, a next generation, AI-based condition monitoring solution, precision-built for hygienic process equipment to deliver more accurate analysis and support.

Read more...
The next generation in metal sorting
Mecosa Analytical Instrumentation & Environmental Monitoring
In the metal recycling industry, companies are increasingly challenged to not only improve the efficiency of their processes but also to raise the quality and purity of the sorted materials to new levels. By integrating proven spectral analysis technology into its market-leading REDWAVE XRF sorting system, REDWAVE is unlocking new opportunities for metal recycling, particularly in aluminium recovery.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved