Editor's Choice


Nick Denbow's European report: Advances in battery technology

April 2017 Editor's Choice

The opportunities for spin-out businesses and industries from university research projects are multiplying. The growth in this sector comes from the acceleration of technology in general, but also because the increased investment in education means there are a lot more research students, some with good ideas, but others just looking for topical subjects to latch onto for their research project. Also, industry has learnt that by funding some low cost university research, other ideas might emerge that might be of benefit.

A lot of attention is being given to new designs of battery, as there are some well-known major commercial projects where new systems are needed. First to come to mind would be batteries for electric cars like the Tesla. Here, low-cost, lightweight and relatively compact devices are needed, with high-power output and fast charging. Second are the batteries (or systems) needed to store the power generated by solar farms or wind turbines, during the hours when it is not needed, so that it is available for different times of the day. Possibly lower down the priority list are the small long-life battery systems needed for IIOT sensors and industrial sensors in general. These do not have the major numbers, or the (relatively) high price, so do not attract as much attention.

Eliminating standby power drain

So, it was all the more interesting to hear of research at Bristol University, in the UK, where Dr Stark and his colleagues in the Bristol Energy Management Research Group have developed an electronic chip that can switch on a sensor only when that sensor is being asked to provide or monitor data: for the rest of the time the chip and the circuits which it controls consume no energy at all. It may not be a new battery development as such, but it would allow a much extended battery life, by eliminating all stand-by current drain.

The principle is that the chip uses the small amount of energy transmitted in the interrogation signal from the system asking for the data, to trigger a circuit that switches the device on. The interrogation signal could be from an infrared remote control, or a wireless signal. The team developed their circuit using the same principles as those used in computers to monitor their internal power supply rails – to ensure the voltage does not dip below a certain threshold. The trigger signal uses a few picoWatts of energy, and a signal threshold level of 0,5 V, which is achievable from a passive sensor, just using the received wave energy.

The natural follow-on from this concept is that the trigger signal on some sensor applications could be derived from the event being monitored, such as a rapid increase in the sound or vibration levels of plant machinery. Also, for a security alarm, the movement of a hinge or similar could be sensed magnetically. Conventional power management techniques would be used to switch the sensor off once the data has been transmitted to, and acknowledged by, the monitoring systems.

Power storage

With solar and wind energy providing such a large part of the power used by the National Grid in certain areas, many ways are being researched to achieve power storage over the short term, such as 24 hours. There are already companies providing large storage systems with banks of conventional batteries, acting like very large uninterruptible power supply (UPS) systems. In Spain and the USA there are solar collector systems where the sun’s heat is concentrated onto a central collector, melting sodium salts: the heat is later used to drive a steam turbine. Further systems are being trialled where surplus energy is used to liquefy gases, or compress them in a high pressure chamber, later the stored gas can be used to drive a turbine generator.

A novel development of a battery cell reported recently is the use of a low cost electrolyte for use with aluminium and graphite electrodes. Dr Dai, at Stanford University, in collaboration with Taiwan’s Industrial Technology Research Institute, demonstrated such a battery powering a motorbike in 2015, but the electrolyte was expensive. The new electrolyte is 100 times less expensive – it is based on urea. Dr Dai sees this as a useful solution for storing solar power, even domestically – maybe new houses will have such a system underground, and call it a “Power storage pit”!

Nick Denbow spent thirty years as a UK-based process instrumentation marketing manager, and then changed sides – becoming a freelance editor and starting Processingtalk.com. Avoiding retirement, he published the INSIDER automation newsletter for 5 years, and then acted as their European correspondent. He is now a freelance Automation and Control reporter and newsletter publisher, with a blog on www.nickdenbow.com





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Loop signature: Tuning part 4 processes
Michael Brown Control Engineering Editor's Choice Fieldbus & Industrial Networking
The purpose of this particular article is to try and give those unfortunate enough to have to use SWAG (scientific wild ass guess) tuning a bit of an idea of how to go about it, and even more importantly some understanding of a couple of basic principles.

Read more...
EtherCAT and PC-based control elevate next-generation laser cutting machine
Beckhoff Automation Editor's Choice
Cincinnati Incorporated has been building sheet metal processing equipment for 125 years. Since the switch to PC-based control, the only limits to development have been physical.

Read more...
Ensure seamless integration and reliable performance with CANbus solutions
RJ Connect Editor's Choice Fieldbus & Industrial Networking
Modern industrial applications require robust and effective communication. The CANbus product range guarantees smooth integration and data transfers throughout systems.

Read more...
Connecting every transport node
RJ Connect Editor's Choice Data Acquisition & Telemetry
Stockholm's bus system strategically links urban mainline, suburban mainline, non-mainline routes, community service buses and night buses. To acquire and process data from multiple sources and analyse onboard information on their moving buses, Transdev sought a dependable and powerful onboard computer. It teamed up with CatAB, Moxa’s local representative, known for delivering top-notch industrial data communication boards and equipment since 1988.

Read more...
Local range of planetary units
SEW-EURODRIVE Editor's Choice Motion Control & Drives
As SEW-EURODRIVE South Africa actively extends its offerings to customers, the SEW PPK and SEW P2.e industrial gearbox ranges are good examples of solutions that are well suited to the local business environment.

Read more...
Digitalised recycling systems
ifm - South Africa Editor's Choice
The EREMA Group develops and produces plastics recycling systems. The approximately 7500 active plants worldwide have the capacity to produce more than 20 million tons of recycled granulate. With up to 80 vibration sensors per system, EREMA relies on sensor technology and IO-Link masters from ifm to control the manufacturing process.

Read more...
VEGA fights incorrect measurements
VEGA Controls SA Editor's Choice
VEGA’s 80  GHz radar sensors, with their 120 dB dynamic range, ensure full visibility in all process conditions, overcoming interference and obstacles that standard sensors find challenging.

Read more...
Helping mining customers achieve balance
Endress+Hauser South Africa Editor's Choice
The mining industry faces several ESG challenges, particularly in relation to water stewardship, water licensing, water quality monitoring, and emission monitoring. Fortunately, Endress+Hauser is well positioned to help mines achieve their commitments in these areas.

Read more...
Keep the ball rolling
Bearing Man Group t/a BMG Editor's Choice Motion Control & Drives
BMG’s Fluid Technology team has recently completed the design, supply and commissioning of an advanced lubrication system for a main bearing on a ball mill, which has been developed to optimise productivity and minimise maintenance requirements and downtime.

Read more...
Case History 195: Unstable reboiler steam flow
Michael Brown Control Engineering Editor's Choice
A high-pressure steam flow control in a reboiler on a column in a petrochemical refinery continually cycled when placed in automatic. Several attempts had been made to tune the controller, but these had been unsuccessful.

Read more...