Electrical Power & Protection


Can IR windows be considered ‘arc resistant’?

March 2017 Electrical Power & Protection

It is easy for an end-user to be misinformed about the specifications of an IR window because there is often confusion in the market about parameters such as arc resistance, IP ratings and environmental stability, in respect of these particular devices. This is particularly true for IR windows manufactured from a crystal substrate, since these are often perceived as being stronger than steel.

Completing an arc containment test on switchgear is required to confirm that the design meets the IEEE and IEC standards, and, if IR windows were installed in the piece of equipment under test, then, if successful, an IR window manufacturer could claim that the window met the IEEE or IEC arc containment requirements for that particular piece of equipment for that particular test. However, a claim of all-encompassing ‘arc resistance’ for that particular IR window would be misleading.

What do the regulations say?

Whilst there are regulations from UL and CSA on IR windows fitted in electrical enclosures up to 600 V, there are no specific regulations from IEEE or IEC. There are however IEEE regulations on ‘visual viewing panes’, which have been in place since the inception of these standards. Like all standards, these have evolved with suppliers’ ability to provide superior, less expensive materials and manufacturing options.

A common theme for all visual viewing pane testing is impact and load testing. This requires the viewing pane to meet a minimum impact and load test without cracking, shattering or dislodging from its housing.

The regulation requires visual viewing panes to withstand impact and load per IEEE C37.20.2 Section a.3.6. Unlike UL, this IEEE standard does not differentiate between the types of material, or give exemptions to crystal infrared windows. Instead it clearly specifies that any transparent material covering an observation opening and forming a part of the enclosure should be reliably secured in such a manner that it cannot be readily displaced in service and not shatter, crack, or become dislodged when both sides of the viewing panes in turn are subjected to impact and load.

This testing method has been in place for many years and is the accepted method for visual viewing panes, so why not use the same test for IR windows? Well, the fact is that the fluoride-based crystal IR windows cannot pass any form of impact, so the IR window manufacturers lean more towards the UL regulation UL1558 for impact and load testing.

Two different test criteria

UL 1558 is the impact and load standard for visual viewing and IR window testing. This test is identical to the IEEE C37.20.2 Section a.3.6 test, except they doubled the load and impact test.

On the face of it, this sounds perfect. But herein lies the rub, unlike the IEEE test, UL1558 has two different test criteria: one with covers fitted and closed on the IR window, and one for covers opened or removed.

When provided with a cover, results are considered to be acceptable if the assembly prevents insertion of a 13 mm diameter rod at the conclusion of the test. When no cover is provided, the results are considered acceptable if the view pane does not shatter, crack or become dislodged (as with the IEEE test).

Testing IR viewing windows with the metal cover in place is in conflict with the intent of the standard, since the crystal lens will shatter during the test. This renders the window ‘electrically unsafe’ because it fails the IP20 requirement that stipulates the largest allowable hole size in the cabinet is 13 mm. However, the window passes the test due to the fact that a steel rod of that diameter cannot be passed through the metal or plastic cover! If this standard is to be used to certify an IR window, then it is important to insist that the UL1558 test be completed with the covers open, and then meets the minimum test requirement by not shattering, cracking or dislodging, during or after the test.

When it comes to IR windows, the user needs to be more concerned with the mechanical stability of the windows, as a component within the switchgear assembly, and that it meets the minimum requirements for impact and load testing, rather than being misled that the window is somehow arc resistant.

For more information contact R&C Instrumentation, 086 111 4217, [email protected], www.randci.co.za



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Four-digit multifunction instrument
Vepac Electronics Electrical Power & Protection
The OM 403 model series comprises four-digit panel programmable instruments designed for maximum usefulness and user comfort, while maintaining their fair price.

Read more...
New function/arbitrary waveform generator
Vepac Electronics Electrical Power & Protection
Siglent has released the SDG1000X Plus series Function/Arbitrary Waveform Generator, providing engineers with a more flexible and efficient signal generation solution.

Read more...
World’s fastest 14-bit arbitrary waveform generator
Vepac Electronics Electrical Power & Protection
The ARB Rider AWG-7000 is the world’s fastest 14-bit arbitrary waveform generator, with a 20 GS/s real time update rate and 14-bit vertical resolution. Thanks to Simple Rider software, it offers best-in-class performances and an easy to use interface.

Read more...
Steam on demand
Electrical Power & Protection
Rental boilers are increasingly popular, offering the convenience of on-demand power and heat without the commitment of a permanent installation. They are an ideal solution while a customer awaits repairs, or only needs a boiler for a particular period, or does not have the capital to invest upfront.

Read more...
High-voltage backup power solutions
Electrical Power & Protection
Businesses are facing increasing pressure to rethink their approach to power. As a result, there’s been a significant uptick in interest in high-voltage installations, either as standalone battery energy storage systems, or as solar installations feeding into battery storage.

Read more...
Rotary friction welding – a first for Tutuka power station
Electrical Power & Protection
Steinmüller Africa has successfully used rotary friction welding in a project with engineering consultant, eNtsa. This innovative technique was applied to fabricating four headers used for high-pressure water heater boiler units installed at Tutuka power station in Mpumalanga.

Read more...
Why it is vital to size soft starters carefully
WEG Africa Electrical Power & Protection
The application of soft starters has become a well-established strategy to improve the uptime and lifespan for motors and mechanical equipment driven by motors, but they need to be chosen carefully.

Read more...
Changeover switch between two power supplies
Schneider Electric South Africa Electrical Power & Protection
Schneider Electric South Africa has unveiled the Resi9 Changeover Switch product range which provides the perfect solution to switch manually between two power supplies or circuits.

Read more...
Partial discharge monitoring solution for MV switchgear
Schneider Electric South Africa Electrical Power & Protection
Schneider Electric South Africa has unveiled its PowerLogic PD100 Partial Discharge Monitoring Solution, designed to be installed on MV switchgear to detect anomalies early, to prevent unplanned downtime.

Read more...
Boiler update at food processing plant transforms production process
Electrical Power & Protection
The replacement of 78 year-old boilers at a Western Cape food processing plant by Associated Energy Services has not only proven to be a worthwhile investment for the client, but has transformed its entire production process.

Read more...