Editor's Choice


A comet chaser stirs

August 2015 Editor's Choice

4:33 AM 14 June 2015. “Hello Earth! Can you hear me?” A lonely robot, freezing on an isolated space fragment, cheerily reaches out through Twittersphere to herald its reawakening. Seven months after being forced into an ultra low-power state of hibernation, the Rosetta Mission’s Philae lander has finally stirred from its slumber on the icy surface of Comet 67P/Churyumov-Gerasimenko, some 600 million kilometres away.

In November 2014, Philae had touched down to global applause as it became the first spacecraft ever to land on the nucleus of a comet. But, it had come to rest in the shadow of a crater. With its solar panels now unable to harvest the sunlight required to keep the batteries charged, the diminutive craft had been able to work only 60 hours before being obligated to 'go dark' in the primordial wilderness it had come to explore.

As luck would have it, Comet 67P’s elliptical orbit has now changed its position relative to the sun just enough for the rays to light up the solar panels of Philae’s outer shell. This is what breathed life back into the little comet chaser, including the 14 Faulhaber drive systems which defied the harsh conditions of the 10-year journey through the vacuum and low temperatures of space.

The harpoon system / Photo: DLR.
The harpoon system / Photo: DLR.

Because of the small size of the comet, about the size of Mt. Fuji in Japan, the force of gravity is very low in the region making it difficult to ensure a secure stance on the surface. Thus, the Max-Planck-Institut for Extraterrestrial Physics developed a special anchor system for the probe. Immediately after ground contact on landing, two harpoons were to be shot by a propellant charge into the surface of the comet to lodge into it. (Barbs were provided to prevent these anchor fittings from tearing themselves loose again.) As each harpoon shot out, it would have unwound a cable from a circular magazine. By means of a Faulhaber 1628 series brushless servomotor with a 16/7 planetary gearhead, this cable would then be wound back onto a drum until taut in order to secure the probe to the surface. At least that was the plan – unfortunately the harpoons were not fired, the rewinding mechanism was not used, and Philae ended up bouncing three times eventually coming to rest in a crater. Nevertheless, the miniature laboratory was still able to begin its analyses as planned.

Landing gear and sample analysis

During the landing phase, other motors had further important tasks to perform in order to transform the kinetic energy generated during the landing into electrical energy and finally into heat using a spindle drive. A Faulhaber 3557 series bell-type armature motor was connected directly through an external resistor and operated as a generator in this case.

Additional drives from the 1224 series were used in the three-legged landing gear of the craft in order to swivel or rotate the upper part by means of a cardan joint, so that the solar panels would always remain optimally aligned. Microdrives were also needed for taking samples: the lander has a drill that feeds core samples into an oven for pyrolysis. Small 1016 series motors with 10/1 planetary gearhead drive a cam via a worm arrangement. This provides feed to a ceramic breech piece on the oven and simultaneously closes the electrical contacts for the oven heating element. The combustion gases generated in the furnace are then routed through tubes in the oven latch to the scientific instruments for analysis. During its first scientific phase, which lasted a total of 60 hours, the lander performed all of the planned scientific measurements on the comet surface. Philae successfully transmitted this data to the Lander Control Centre before it went into hibernation. Now that the orbit has shifted and its upper part is better aligned with the sun, Philae has revived itself and is once again ready to perform the galactic research for which it was designed. The European Space Agency regards the mission as a complete success, but evaluation of all the received data will take some time.

Outer space and its demands

The demands that outer space place on these drives are high: every kilo of mass that is shot into space costs energy, i.e. fuel – hence money too. Therefore, small, light solutions are sought. At the same time, however, they must also be able to withstand the enormous vibration and acceleration forces during take-off, as well as the constant very-low temperatures and the many years of vacuum conditions prevailing in outer space.

Because cost also plays a major role when selecting components for space projects, the developers wanted to do without costly custom developments if at all possible. Accordingly, they first looked for standard products which complied with as many of their specifications as possible. They found what they were looking for in the comprehensive drive systems product range from Faulhaber. The standard drive solutions fulfilled all mechanical requirements, and the special conditions in space could then be met by making comparably few modifications at negligible additional cost.

For more information contact David Horne, Horne Technologies, +27 (0)76 563 2084, [email protected], www.hornet.cc



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

The future of industrial automation: fieldbus and industrial networking
LAPP Southern Africa Editor's Choice
As a global leader in integrated solutions in the field of cable and connection technology, LAPP recognises that fieldbus and industrial networking technologies are pivotal in shaping the future of manufacturing and production processes.

Read more...
AI-driven innovations with CCTV and cyber security
RJ Connect Editor's Choice Fieldbus & Industrial Networking
The fast progress of artificial intelligence (AI) and video analytics is redefining the rail surveillance landscape. Advancements have bolstered proactive event detection, predictive maintenance and enhanced situational awareness.

Read more...
Loop signature 27: SWAG tuning of simple integrating processes.
Editor's Choice
The chief control engineer of one of the largest petrochemical refineries in South Africa once sent me an email after a course at his plant. He wrote that he had found the section on SWAG tuning of simple integrating processes one of the most informative of the whole course.

Read more...
Harnessing industrial AI agents for reliable automation
Editor's Choice IT in Manufacturing
The excitement around generative AI (GenAI) has been undeniable, promising wide-ranging changes across industries. However, for those of us in the world of industrial control and automation, the realities of implementing these powerful technologies are a little more nuanced.

Read more...
Futureproof your industrial network security with OT-centric cyber security
RJ Connect Editor's Choice
To achieve digital transformation, industrial operators must first address the daunting task of merging their information technology (IT) and operational technology (OT) infrastructure. In this article, we focus on the importance of strong OT network security and provide some tips on how to strengthen cybersecurity for industrial operations.

Read more...
The symbiotic relationship between OEMs and SIs
Schneider Electric South Africa Editor's Choice System Integration & Control Systems Design
While businesses tend to turn directly to original equipment manufacturers OEMs or vendors when embarking on IT projects, the role of the SI as a key facilitator and partner cannot be overstated.

Read more...
Case History 196: Unstable condensate level control.
Michael Brown Control Engineering Editor's Choice Level Measurement & Control
The operators in a petrochemical refinery were having great trouble in trying to stabilise the condensate level in a vessel, and this was adversely affecting other loops downstream. Several unsuccessful attempts had been made to retune the controller.

Read more...
Big themes for 2025
Editor's Choice News
2024 was a year of unprecedented innovation and global upheaval. As we look ahead, Amy Webb, CEO of the Future Today Institute asks which technologies will reshape our world in 2025?

Read more...
Loop signature: Tuning part 4 processes
Michael Brown Control Engineering Editor's Choice Fieldbus & Industrial Networking
The purpose of this particular article is to try and give those unfortunate enough to have to use SWAG (scientific wild ass guess) tuning a bit of an idea of how to go about it, and even more importantly some understanding of a couple of basic principles.

Read more...
EtherCAT and PC-based control elevate next-generation laser cutting machine
Beckhoff Automation Editor's Choice
Cincinnati Incorporated has been building sheet metal processing equipment for 125 years. Since the switch to PC-based control, the only limits to development have been physical.

Read more...