Analytical Instrumentation & Environmental Monitoring


Optimising ESL milk standardisation

August 2015 Analytical Instrumentation & Environmental Monitoring

Although the process steps involved in the production of drinking and extended shelf life (ESL) milk are different, fat standardisation is generally still taken care of indirectly in both cases using Coriolis flowmeters. A new method of fat standardisation using a non-contact, inline analysis device capable of measuring the fat content in ESL milk with extreme accuracy is introduced here.

The basics of milk production

To produce drinking milk with various minimum fat contents, the raw milk is separated in the dairy into skim milk (approx. 0,05% fat content) and cream. The Coriolis flowmeter is placed in the flow of cream to measure the fat content. In addition to measuring the direct mass flow, Coriolis flowmeters also measure the density of the product. The fat value is calculated using this density and a fixed formula.

However, the only reason this fat measurement is relatively accurate is because the fat content in the cream flow is sufficiently high. Measurements done in the drinking milk, where producers would actually like to measure the value, are not nearly accurate enough to regulate the fat content.

Using the current flow rates of skim milk and cream, it is possible to calculate how much cream must be added to achieve the desired fat content in the standardised milk. In addition to the inaccuracies of the measuring and final controlling devices, the approximate 0,02% fluctuation range of the fat value in skim milk plays a role when it comes to customer requirements for high accuracy. Consider also the many process steps involved in ESL milk production, whereby partial flows can be pasteurised, homogenised and micro filtered, it is easy to see why the inline measurement of fat content is advantageous.

Taking into account the various uncertainties regarding indirect fat standardisation, the real fat value must be regularly checked by way of sampling and laboratory measurements. These tests take a relatively long time in the laboratory, meaning intervention in the process is thus correspondingly delayed. In the case of deviations from the required fat content, the target value is manually changed and more or less cream is added accordingly.

Spectroscopic analysis simplifies the process

Krohne’s new Optiquad M is a spectroscopic analysis system well suited to the task of fat standardisation, as it performs continuous inline non-contact measurement of fat content directly in the drinking milk. In addition, it also measures the protein and lactose content in milk products. The Ammerland dairy processes approximately 3,3 million litres of raw milk per day and was looking for a solution to the problem of fat standardisation in ESL milk. Particular emphasis was placed on continuous accurate measurement to enable improved process control without time delay. The dairy installed an Optiquad M 4050 W. The analyser unit was installed directly in the production line by way of a standard Varinline process connection without bypass. This entire measuring section fulfils the high hygienic requirements and is FDA-compliant.

The analyser unit contains no moving parts, and the wetted parts are cleaned via CIP. The operating unit, built in a stainless steel housing, is installed in close proximity to the analyser and connected using a serial interface. Its purpose is to display the measurements, make them available to the control unit via 4-20 mA outputs and enable all entries and actions. To this end, the operating unit is fitted with a modern industrial PC featuring touchscreen operation.

The operating unit also takes care of any required optimisation of calibration. To do so, samples are first taken by way of the integrated sampling valve. During sampling, a button is activated to notify the analyser unit and the measurement, determined over the entire period of sampling, is saved in the operating unit. The reference value as determined in the laboratory is then entered. If several samples have been measured and entered, the current calibration can be optimised at the touch of a button.

The measurements of the Optiquad M were recorded over several months. The accuracy was found to be in the range of the reference measurements determined in-house and in independent laboratories. “Our confidence in the device grew when we heard this,” commented dairy production manager, Armin Tjards. “With Krohne’s solution we can measure the fat and protein content directly in the standardised ESL milk, in other words, exactly where we want to measure. We can now continuously look into the process which means that we were able to set the desired fat content precisely, even in the complex production processes of ESL milk.

Optiquad M functionality:

The analysis system uses optical spectroscopy to measure the contents of milk products continuously and without contact. In the process, light of varying wavelengths is coupled into the product through an optical window. The system simultaneously determines the values of up to four optical effects (transmission, scattering, fluorescence and refraction) which manifest in different ways depending on the substances in the product, and then uses them to calculate the amounts of protein, fat and lactose.

For more information contact John Alexander, Krohne SA, +27 (0)11 314 1391, [email protected], www.krohne.com



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

The importance of environmental monitoring and visibility at data centres
Legrand Analytical Instrumentation & Environmental Monitoring
Data centres are one of the most energy-intensive building types, consuming up to 50 times the energy per floor space compared to a typical commercial office building. With organisations embracing advanced technologies, data centres powering these technologies are under increasing pressure around the globe to increase capacities and improve efficiencies.

Read more...
Analysers for use in high ambient temperature environments
Analytical Instrumentation & Environmental Monitoring
The 993X series of analysers from Ametek Process Industries are now IECEx Zone 2 certified for use in locations with up to 60°C ambient temperature. Built with IP66-rated enclosures and using an integrated cooling system, they can be installed outdoors or in minimally temperature-controlled enclosures, reducing complexity while lowering capital and operating costs.

Read more...
ATEQ is adapting to evolving markets
ATEQ South Africa Analytical Instrumentation & Environmental Monitoring
ATEQ is a global company that has established itself as a world leader in leak test technologies and industrial quality control equipment. The company’s mission is to help its customers remain compliant with regulations and maintain product quality through its range of support services.

Read more...
The art of precision measurement
Analytical Instrumentation & Environmental Monitoring
To achieve precise, reliable measurement results when scanning component parts, use is frequently made of reference points. In optical measuring processes, these permit the referencing of three-dimensional objects during the digitisation.

Read more...
Vibration test system supports international space industry
TANDM Technologies Analytical Instrumentation & Environmental Monitoring
Dragonfly Aerospace has launched EOS SAT-1, one of seven satellites in the world’s first agricultural-focused constellation. With optimisation of resources being a key component for Dragonfly, it called on TANDM to assist in creating and heavily expanding its environmental testing capabilities by providing a vibration test system that allowed it to perform in-house vibration and shock testing.

Read more...
KROHNE reaches important milestone in Ethernet-APL
KROHNE Fieldbus & Industrial Networking
In December 2023, KROHNE made Ethernet-APL demo devices available to selected customers. This step marks an important milestone in the company’s own Ethernet APL development project for various sensor types. Ethernet-APL technology is a revolution in the process industry.

Read more...
Sensor technology for brewing
Endress+Hauser South Africa Analytical Instrumentation & Environmental Monitoring
Brewing is a delicate balance, blending tradition with innovation. Now, modern sensor technology is stepping in to perfect the art of fermentation.

Read more...
Loesche gets dirty
Loesche South Africa Analytical Instrumentation & Environmental Monitoring
The world’s attention is on environmental sustainability, and the pressure on countries and companies to demonstrate their commitment to preserving the environment and preventing climate change is at an all-time high. As we confront a multitude of environmental and social challenges, managing waste and maximising landfill diversion can play a key role.

Read more...
Water systems with energy savings and sustainability
Labotec Analytical Instrumentation & Environmental Monitoring
ELGA Veolia has relaunched its award-winning PURELAB flex range, with features to reduce the system’s environmental footprint and incorporate some of the latest innovations in water purification technologies. The ecological improvements integrated into the flex range have been made to reduce water and power consumption.

Read more...
Keeping an eye on invisible radiation
Omniflex Remote Monitoring Specialists Analytical Instrumentation & Environmental Monitoring
At its peak in 1994, the energy generation capacity of the UK’s nuclear power stations was 12,7 GW across 16 plants. In 2024, the capacity has fallen to around 5 GW, and the number of stations is down to nine. However, this is far from the end of the story as spent nuclear fuel remains radioactive for centuries, and requires rigorous safety processes to safeguard against leaks.

Read more...