Electrical Power & Protection


Designing an energy-efficient compressed air system

April 2011 Electrical Power & Protection

Steam and compressed air are often the most abused and expensive forms of power in a factory. Often compressor housing is designed with undersized piping and air treatment equipment which does not use electricity efficiently.

A pressure drop of 1 bar in an air system is equal to a wasted power cost of R23 777 per annum when a 185 kW air compressor is continuously operated at 28 m³/min (assuming R0,38/kWh). For an energy efficient compressed air system, design engineers might consider the following pointers:

* Before buying a new compressor plant, conduct a professional compressed air audit to determine the plant’s actual air consumption and prevent over or under sizing of the compressor and dryer plant.

* Log air leaks and implement an action plan to reduce them to an acceptable level.

* Select air compressors which satisfy the plant’s volume and quality needs. Variable speed drives may be considered.

* Select an energy efficient air dryer that provides for the dew point needs of the plant with minimal air pressure losses. Over specification will lead to increased long-term running costs. Decentralised air drying, with different types of dryers might be considered to reduce energy wastage.

* If dew points below -40°C are required, consider dew point controllers for dryers with capacities greater than 14 m³/min. Above 21 m³/min, heat regenerative dryers should be mandatory. These have lower purge air requirements and the ensuing power savings are enormous. Recovery time for the extra capital expenditure is often under one year, with continuous payback for the life of the dryer.

* Use power efficient OEM filter cartridges with a pleated construction. These normally have a lower initial Δp and will inflict a lower pressure loss while providing longer service intervals compared to a simple wound cartridge.

* To reduce air wastage when condensates are discharged, use efficient capacitance type intelligent condensate drains for dryers, filters and receivers.

* Design the compressor house with cognisance given to ventilation and efficient re-use of waste heat from the compressors. A 1°C rise in the inlet temperature to the compressor will decrease the compressor’s output capacity by 1%.

* Split the compressor house power supplies to minimise compressed air disruption in the event of a transformer failure.

* Design the compressor house air main piping to achieve an air pipeline speed of 3 m/sec. This will ensure that compressors do not offload prematurely due to pipe line pressure restrictions. It is common to find air compressors running in idle mode, and not able to deliver air to the plant due to undersized and restrictive compressor house piping.

* Design the ring main air distribution system to achieve an air speed of less than 6 m/sec and a maximum 0,2 bar system pressure drop. This will ensure that pipe line losses are minimised.

* Install correctly sloping air lines to ensure good condensate drainage.

* Install the necessary isolation valves to provide efficient management of the compressed air mains in the event of future line changes and maintenance.

* Install an oily waste water condensate management system from the compressor and dryer system. A litre of oil can infect a million litres of water.

* Do not use the diameter of the compressor outlet as a guide for pipeline design. Often compressor manufacturers specify very tight discharge ports.

These are just some of the issues to be considered before a design is finalised. Inadequate design and poor selection of equipment can inflict huge hidden costs on a company and can add hundreds of thousands of rand to the energy bill. It pays to avoid pitfalls at the design stage.

For more information contact Allen Cockfield, Artic Driers, +27 (0)11 425 3484, [email protected], www.articdriers.co.za



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Rail electrification and EV solutions for integrated transport systems
Electrical Power & Protection
A comprehensive range of solutions for rail electrification and electric vehicles is available from leading technology provider ABB, contributing significantly to integrated and sustainable transport systems.

Read more...
PPS delivers containerised distribution board for Western Cape hybrid power project
Electrical Power & Protection
South African electrical enclosure specialist Power Process Systems has successfully completed the design, fabrication and commissioning of a 4000 A containerised distribution board for a wind/PV solar hybrid renewable energy project on a site in the Western Cape.

Read more...
The choice of a thermal carrier is critical for optimal processing
Electrical Power & Protection
Historically steam, fuelled by coal, has been the most prevalent thermal carrier in South African industry. However, times are changing, with the manufacturing and processing sector needing to review the energy reticulation systems and thermal carriers currently in use.

Read more...
ABB’s blueprint for a net zero future
Electrical Power & Protection
ABB’s Mission to Zero is a strategic initiative aimed at achieving a sustainable future characterised by zero emissions, zero accidents and zero waste.

Read more...
How South Africa’s transformer manufacturing industry can fill a gaping infrastructure gap
ACTOM Electrical Machines Electrical Power & Protection
South Africa’s energy transition is accelerating the demand for power transformers. However, this shift toward renewable energy is exposing a critical infrastructure gap: a severe shortage of transformers.

Read more...
General-purpose 350 W AC-DC power supply
Electrical Power & Protection
The TDK-Lambda GUS350 series of compact single-output general-purpose power supplies addresses the need for an economically priced product while maintaining reliability and quality.

Read more...
Ground-breaking battery tester
Comtest Electrical Power & Protection
Midtronics offers the proven MVT handheld battery tester. This revolutionary tool, powered by MDX-AI, is set to redefine the standards of battery diagnostics and testing in the automotive industry.

Read more...
Green hydrogen could be the missing link in powering the future of technology
Electrical Power & Protection
Green hydrogen has numerous applications across multiple industries. It also has the potential to provide a clean energy source to power future technology, with far-reaching implications for both industry and society.

Read more...
Energy audits pave the pathway to sustainability and savings
Schneider Electric South Africa Electrical Power & Protection
Energy audits serve as essential tools for businesses looking to reduce costs and meet environmental targets. By analysing energy consumption across systems such as lighting, HVAC, ICT and water infrastructure, audits identify inefficiencies and quantify carbon footprints, enabling data-driven decisions for operational and financial optimisation.

Read more...
Passive fire protection for lithium-ion battery risks
Electrical Power & Protection
In response to the growing threat posed by lithium-ion (Li-ion) battery fires, a breakthrough passive fire protection solution is now available in South Africa.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved