Sensors & Transducers


Wind turbines get smarter

June 2009 Sensors & Transducers

The rapid depletion of conventional energy sources has generated an increased interest in renewable energy.

Countries around the world are implementing subsidies and grants to improve the technologies for generating power from alternative sources. A great deal of effort is being put in to improving the reliability of wind turbines, especially under the influence of high winds that may cause them to fail. One avenue that researchers are exploring is in developing a feedback control system that can provide information in realtime from sensors on turbine blades to prevent damage.

Sensors in the blades

To test this approach, researchers from Purdue University and Sandia Labs have embedded uniaxial and triaxial accelerometers within wind turbine blades as they were constructed. Such sensors can be used to control surfaces of turbine blades and flaps like those on the wings of an aircraft to alter the aerodynamics of the blades for better control.

The information acquired from the sensors in realtime would enable improved response to dynamic wind conditions. This capability makes continuous sensor data a critical asset. Research has shown that using a combination of three sensors along with 'estimator model' software accurately depicts the amount of force being exerted on the blades of the wind turbines. There is a need to identify forces and loads on turbine blades in order to predict their fatigue.

System optimization

Feeding a control system with sensor inputs better enables energy optimisation in the system. The main components of the wind turbine are the blades (made of fibreglass or wood strengthened with carbon fibre), a generator, and a gear box.

Varying wind speeds make it a challenge to operate the turbine and generator for optimum energy capture. This requires decreasing the force on the components during high winds and increasing the load during low winds. The issue of reliability becomes as important as efficiency, since the height of the towers supporting the turbines makes repairs expensive.

The sensors detect two types of acceleration – dynamic acceleration resulting from gusting winds and static acceleration owing to gravity and constant background winds. It is imperative that both types be measured correctly to best quantify the forces exerted on the blades.

Advances in blade design

The sensor data also enables designing more resilient blades since the accelerometers can measure acceleration in different directions. This helps in determining the extent and characteristics of bending and twisting of the blades along with the minor vibrations at the blade’s tip that provides an indication for fatigue or failure.

Sensor inputs in a smart system can be used to control the turbine speed and help by directly modifying the blade pitch and provide feedback to the generator for further corrective measures. The research is likely to represent significant progress in the control of wind turbines, although a lot more work is expected to be done on the system.

Further research will focus on the application of this system to highly advanced turbine blades that are more curved than conventional blades. As this is a more complicated shape to work with, the application of the sensor feedback techniques has proved more challenging. The main aim for the sensor system is to monitor forces on the blades to directly predict oncoming failure and at the same time improve the reliability of the turbine.

For more information contact Patrick Cairns, Frost & Sullivan, +27 (0)18 468 2315, [email protected], www.frost.com





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Leading the way with Level 9 PDS implementation
Sensors & Transducers
Applying a Level 9 Proximity Detection System (PDS) to a mining operation is as much about changes in behaviour as it is about technical solutions, according to Pieter Wolfaardt from Apex, Booyco Electronics’ training partner of choice.

Read more...
Enhanced automated weld inspection system
Sensors & Transducers
SmartRay is offering the release of new hardware for its weld inspection system, JOSY, delivering elevated performance and flexibility in the process.

Read more...
Leaders in sensor technology
Gail Norton Instrumentation Sensors & Transducers
Photoelectric eyes have always needed perfect working conditions, but in the workplace there is no such thing. Steam, water, light and dirt interfere with most photoelectric eyes, but never with a Telco sensor.

Read more...
Easy parameter setting of vision sensors
ifm - South Africa Sensors & Transducers
Contour verification and object inspection are two of the most important functionalities in industrial imaging. With the new O2D5xx series, ifm now offers a solution that perfectly masters both functionalities

Read more...
Keeping a close eye on product quality and purity
Endress+Hauser South Africa Sensors & Transducers
Colour measurements are necessary in many processes to avoid product losses and ensure safe production and batching. The Memosens Wave CKI50 process spectrometer from Endress+Hauser is a compact, robust and process-friendly device allowing quality, batching and phase checks to be performed by a single instrument for the entire visible colour spectrum.

Read more...
The sensory reaction of building management systems
Schneider Electric South Africa Sensors & Transducers
Today’s building management systems (BMS) cannot function properly without sensors. This is so critical that if sensors start failing, they can become ‘blind’.

Read more...
Advanced sensor technology to reduce vehicle fatalities
Senseca Sensors & Transducers
Measurement technology plays a critical role across a range of industries. This is especially true when supplying highly accurate and reliable data for road management entities that assist drivers of vehicles experiencing hazardous weather conditions.

Read more...
High-precision automated inspection
Sensors & Transducers
Delivering advanced inline metrology to an expanding range of challenging industries, SmartRay is launching the smallest field-of-view 3D sensor of its cutting-edge ECCO X series.

Read more...
Long-range laser distance measuring sensor
Vepac Electronics Sensors & Transducers
The MS-100A is a long-range laser distance measuring sensor with a range of 150 to 1000 mm. This sensor excels in applications requiring extended measurement capabilities, such as quality control and logistics.

Read more...
The power of smart maintenance for securing water supply
Omron Electronics Sensors & Transducers
The water industry plays an essential role in delivering safe drinking water and effective wastewater services to society and various industries. A lack of maintenance could have severe consequences, as even the failure of a single component can significantly impact operations, and maintenance expenses represent a substantial part of the overall costs of water and pumping systems.

Read more...