IT in Manufacturing


Past, present, and future trends in EAM and CMMS

May 2018 IT in Manufacturing

What are the trends for enterprise asset management (EAM) solutions, and where is the domain going in the future? This ARC View examines the recent past and current trends to assess what the future holds across seven aspects of EAM: application focus, management objective, breadth/footprint, scheduling capabilities, mobility for work orders, predictive maintenance adoption, and soft-ware deployment. By examining the path of EAM across these dimensions, we can gain a clear view of the near future for EAM, computerised maintenance management systems (CMMS), and field service management (FSM).

EAM software suppliers can use these trends as a basis for product planning. Users should consider these trends in their software selection criteria.

Trends in asset management applications.
Trends in asset management applications.

Asset management perspectives

Most change, particularly for mature markets like EAM, occurs organically by adopting new technologies and building on existing capabilities. Examining technology trends for the recent past provides a guide to a probable future. ARC Advisory Group has been researching the EAM area for over 25 years and is thus well-positioned to provide this perspective.

Focus

In the past, a CMMS supplier tended to focus on a particular niche to differentiate itself from other suppliers. To serve its customer base and remain competitive, each supplier deepened its capabilities for a type of asset. These solutions evolved into the current day applications that tend to focus on asset types, i.e. EAM for plant equipment, FSM, facilities and fleet. However, nearly every business has a combination of these asset types. In the future, leading suppliers will offer one application that seamlessly manages all types of assets.

Objective

In the past, EAM focused on managing the resources within the maintenance function, including people, parts, and documentation. Now, the scope has grown to comprise managing the lifecycle of the asset, including financial aspects. In the future, IIoT-enabled remote monitoring and other capabilities will support asset optimisation across both maintenance and operations to enable overall asset performance management (APM). Trade-offs, including parameters like equipment capability, asset health, energy utilisation, and quality/yield, will be applied to meet production schedules with low risk and cost.

Breadth

CMMS focused on managing maintenance resources and each department could sometimes select its software supplier. Often, this became plant-specific, but sometimes it extended to each department within the plant. Now, a business unit will typically have a single instance on a corporate or hosted server that supports multiple plants. As equipment becomes increasingly complex, more maintenance will need to be outsourced (using IIoT) to the OEM or a service organisation specialising in that type of device. This trend will increasingly require visibility into the capabilities and status of those external resources which will need to be managed as an extended enterprise within EAM.

Scheduling

In the past, most maintenance was reactive. Schedules, typically established manually, lacked consideration for capacity and availability of resources, and thus were only followed loosely, if at all. Now, scheduling assesses skills and parts availability and includes some analytics for optimisation. In the future, scheduling will be automated and optimised using machine learning and cognitive computing.

Work orders

The business process for executing work orders by the technician is undergoing a digital transformation. In the past, the typical business process involved printing work orders, hand-written data entry by the technician when time permitted (sometimes at the end of the shift), and an administrative person entering the data into the EAM system. Data quality issues occurred for a variety of reasons, including the technician not valuing the data (it is used by someone else), poor handwriting, timing delays, and more. These data quality issues often cause supervisors to lose confidence in the EAM system which then devolves into a record of what was done, rather than a proactive planning tool.

ARC’s research indicates that 50 percent of technicians now use a mobile device for work orders. The technician enters the data while performing the work. The software provides pick lists, format identification, and other data validation that assures high data integrity. The administrative person is no longer needed for data entry, removing that source of errors. The corresponding EAM system becomes a trusted planning and scheduling tool with higher productivity for all those involved. In the future, ARC expects that nearly all work orders will be managed via mobile devices.

Predictive maintenance

Prior to IoT, adoption of predictive maintenance (PdM) was low since it involved an expensive and high-risk custom project. A development project included data acquisition, data management, analytics, and integration with other applications. The project team would use technologies that made sense at the time and then disband when the project was done. When something changed in the technologies deployed or integrated applications (like an upgrade), the PdM application would often break and, without the project team, the application would go away.

IIoT provides lower development costs, and fewer technology risks. The IIoT platform provides a sustainable IT infrastructure, and the development focuses on choosing services for building the application. Today, the under-served need for predictive maintenance has become the primary application of industrial IoT. With PdM, work occurs when truly needed, which reduces maintenance costs while also improving reliability. In the future, these business drivers and further ease-of-use improvements in the technologies will allow IIoT and PdM to become pervasive.

Deployment

EAM, along with nearly all enterprise software domains, is migrating from an on-premises server to a data centre (private or public) and increasingly, to the SaaS model. This has improved IT resource utilisation by outsourcing commodity IT skills (like desktop software and server maintenance), and focusing them on applications that run the business.

Conclusion

Technology adoption had a huge impact on EAM software capabilities in the past. This will continue in the near future. IIoT enables the addition of equipment data needed by maintenance to the process data used by operations. Nearly the entire EAM space is now adopting strategies to utilise the equipment data to lower costs and improve reliability. As organisations assimilate the changes in EAM, they will see opportunities to optimise across maintenance and operations for APM. This provides a business case focused on return on assets (ROA) that aligns with executive metrics, as well as insight into where the market will go in the future.

Note: This ARC View was prepared with input from Ron Wallace of IBM who has over 30 years of experience with EAM and CMMS applications.

For more information contact Paul Miller, ARC Advisory Group, +1 781 471 1141, [email protected], www.arcweb.com





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Fortifying the state in a time of cyber siege
IT in Manufacturing
In an era where borders are no longer physical, South Africa is being drawn into a new kind of conflict, one fought not with tanks and missiles, but with lines of code and silent intrusions. The digital battlefield is here, and cyber space has become the next frontier of conflict.

Read more...
Levelling up workplace safety - how gamification is changing the rules of training
IT in Manufacturing
Despite the best intentions, traditional safety training often falls short, with curricula either being too generic, too passive, or ultimately unmemorable. Enter gamification, a shift in training that is redefining how businesses train for safety and live by those principles.

Read more...
Reinventing data centre design: critical changes to meet surging
Schneider Electric South Africa IT in Manufacturing
AI technologies are pushing the boundaries of what is possible which, in turn, is presenting data centres with a whole new set of challenges. Fortunately, several options are emerging which include optimising design and infrastructure for efficiency, cooling and management systems

Read more...
Watts next - can IT save the planet
IT in Manufacturing
The digital age’s insatiable demand for computing power has collided with an urgent and pressing need for sustainability. As data centres and AI workloads consume unprecedented energy, IT providers are pivotal in redefining how technology intersects with environmental stewardship.

Read more...
South Africa’s digital revolution:
IT in Manufacturing
South Africa stands at a pivotal moment in its technological evolution, poised to redefine itself as Africa’s leading digital powerhouse. Over the past two years, political leaders and media narratives have painted a picture of rapid digital transformation, underscoring the government’s ambition to position South Africa at the forefront of innovation.

Read more...
Smart manufacturing, APC and the SA marketplace
Schneider Electric South Africa IT in Manufacturing
Manufacturers are prioritising the integration of smart technologies into their daily operations to stay one step ahead of the competition. In South Africa, some experts believe the country has the potential to leapfrog its global peers through the creation of smart factories.

Read more...
Schneider Electric’s Five-Pillar Strategy takes the guesswork out of equip
Schneider Electric South Africa IT in Manufacturing
Schneider Electric’s Field Service Cycle, otherwise known as the Five-Pillar Strategy, is a structured approach to managing the lifecycle of equipment to prolong asset lifespan while reducing the total cost of ownership for customers.

Read more...
Enhancing operational safety and efficiency through advanced risk-based modelling
IT in Manufacturing
Now, more than ever, capital and operational cost can be reduced while enhancing operational safety and increasing production uptime by applying transformative methods such as Computational Fluid Dynamics modelling.

Read more...
Laying the groundwork in IT/OT
IT in Manufacturing
In the realm of manufacturing, the core mandate is to deliver value to stakeholders. For many in the industry, this is best achieved through a risk-averse approach. Only upon establishing a robust foundation should a business consider venturing into advanced optimisation or cutting-edge technological innovations such as industrial AI.

Read more...
Looking into the future of machine vision
Omron Electronics IT in Manufacturing
Artificial intelligence (AI) is driving a significant transformation in all areas of industrial automation, and machine vision is no exception. Omron’s AI-powered machine vision systems seamlessly integrate state-of-the-art algorithms, enabling machines to analyse and interpret visual data meticulously.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved