Enclosures, Cabling & Connectors


Cables that rotate and turn

November 2017 Enclosures, Cabling & Connectors

It’s a time of revolution in industry – automation, digitalisation and Industry 4.0 are just some of the current buzzwords. Robotics is an area that is developing rapidly.

Worldwide, annual growth in the installation of industrial robots has been 16% since 2010. The automotive industry continues to dominate, but other sectors are catching up, with use in consumer electronics increasing sharply. As part of this trend, small and medium-sized producers are increasingly investing.

Manufacturers of robots are responding with new models that are more compact, more versatile and last longer. In the past, robots would be replaced when a product generation was phased out, but today they are taking on new tasks and these change more frequently than before. The variety of movements means that the loads on certain components are increasing, particularly the cables. They perform torsion and kinking movements, frequently a mixture of the two, and with different bending radii and torsion angles as well.

Standard cables often unsuitable

Lapp has numerous robust cable types in its standard range, which have performed for years without failing on many robots. However, these standard cables are not always suitable for special applications such as those outlined above, and these applications are on the increase. This is where cables uncompromisingly tailored for a specific use come into play. For cable manufacturers, robotics is the supreme discipline.

The most important difference between robot cables and conventional moving cables is that the former have to withstand both bending and torsion over their entire service life, and in development they are designed fundamentally differently to a power chain cable, for example. There are three key parameters:

Relocated to class 6

Braided conductor class: Robot cables should have at least class 6 conductors, which are designed for continuous movement in line with the standard. Lower classes are less suitable, or totally unsuitable. However, sometimes even braided conductor class 6 is not sufficient. For cables that need to be highly bendable and twistable, Lapp uses braids outside the standard in which the individual wires are just 0,05 mm thick, considerably thinner than the thinnest braided wires covered by the standard.

Torsion angle: A typical value is ±360°/m, which means that a cable can be twisted one full revolution to the left and once to the right about its axis per metre of cable length. This applies to cables without shielding. With shielding the value is typically ±180° or half a turn per metre.

Bending radius: Ideally, this is between four and 7,5 times the outer diameter and thus in some cases lower than for cables that are only subjected to occasional movement. This allows the cables to be coiled in tight radii and in tightly packed hose assemblies.

Three times about its own axis

For some applications, even these properties are not sufficient. For these, Lapp supplies special cables qualified for even higher torsion angles, including a cable for a 3D laser welding robot that allows torsion of over ±1000°/m. This means that the cable can be twisted almost three times about its own axis. This is unique worldwide. For the robot concerned this is definitely not overkill, as the robot arm moves completely freely in three dimensions, twisting several times about its own axis.

The amazing thing is not the sheer extent of the torsion angle, but the fact that this movement is possible over many years with no deterioration in properties. This particular cable is qualified for a minimum of seven million cycles, proved by tests at the Lapp testing centre, which is currently being extended for even more dynamic movement tests. Another special robot cable is certified for over 15 million cycles and, with ±720°/m, allows two turns about its own axis per metre. To create cables capable of handling such extreme loads, the Lapp engineers have to dig deep into their box of tricks. For the cable discussed above with a ±1000°/m torsion angle, for example, braids made of a special copper alloy were used. They retain their minimum electrical resistance even when bent or twisted and after a large number of movement cycles.

Sophisticated construction

These properties can only be achieved with a sophisticated and complex cable construction. There are several factors that can be influenced:

Stranding types: Bundle stranding is usual for robot cables, with the individual conductors combined in one or more bundles. These cables withstand both bending and torsion. If the electrical properties demand it, for example for data or servo cables, cables suitable for use on robots are stranded in pairs.

Core insulation: The insulation of the cores has to be able to withstand several million movement cycles. The best solution is a thermoplastic elastomer, or TPE.

Sliding support: Elements help the components in the cable to move against each other with as little friction as possible. They also act as a filler to make the cable circular. Sliding supports can be stranded plastic fibres that fit into the gaps or voids between the cores. Correct placement of these filler fibres requires a high degree of know-how. Thicker cores are often wrapped in a polytetrafluoroethylene or polyester film fleece wrapping to make it easier for them to slide against one another, particularly under torsion.

Shielding: Tests have shown that under torsion the gaps in the braided shield increase in size over time, because the small wires that make up the braid are pulled apart by the torsion and break over time. This pushes up the contact resistance, which has a detrimental impact on the desired shielding effect. Above half a million torsion cycles, spinning with copper wires is superior to braiding. All the wires point in the same direction and the contact resistance hardly changes over the service life.

Outer sheath: Here, as in many industrial applications, the material of choice here is the very robust polyurethane (PUR).

Thinner is better

Customers are increasingly expressing a demand for the cables to be as space-saving as possible because robots are getting smaller all the time. Increasingly, hybrid cables are being used, containing all kinds of cables such as power, data and signals, and even hoses for pneumatics or the air or protective gas supply. For example, Lapp has developed cables for a welding robot that contains dozens of cores for power, signals and industrial Ethernet in a single sheath. Although some of these hybrid cables are 30 millimetres thick or even more, they take up 30% less space than laying individual cables.

As the requirements for robot cables are so diverse, extensive tests are unavoidable for the manufacturers. However, many cable suppliers also have high minimum order quantities, in some cases several kilometres. In the case of Lapp, sample lengths starting at 100 metres are possible. This enables manufacturers to carry out tests without having to spend a lot of money on the cables.

For more information contact Lapp Group, +27 (0)11 201 3200, [email protected], www.lappgroup.co.za



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Cables and wires for food and beverage
LAPP Southern Africa Enclosures, Cabling & Connectors
The strict hygiene regulations for handling foodstuffs stipulate particularly complex requirements for electrical components. The cables and accessories used must withstand a wide range of chemical, thermal and mechanical loads, and also function perfectly at all times in refrigerated and damp rooms.

Read more...
Redefining mobility for fibre cabling
Legrand Enclosures, Cabling & Connectors
As data volumes rapidly increase globally, specialists need to take an urgent look at IT and network infrastructure, with a particular focus on vital equipment like servers, racks and fibre cabling. The Legrand team believes that advanced fibre cabling solutions, which have been developed to simplify deployment, lower costs, improve performance and enable greater densities, will efficiently meet future capacity demands.

Read more...
High-speed data transmission
Enclosures, Cabling & Connectors
Data protocols are constantly evolving to enable interoperability and reliable transfer of increasing amounts of data at the highest speeds between more and more connected devices. To address this technological challenge, Fischer Connectors is expanding its platform capabilities to meet the most demanding connectivity requirements for high-speed data transfer.

Read more...
Robust Ethernet cordset cables
Turck Banner Southern Africa Enclosures, Cabling & Connectors
Turck Banner offers a product range comprising a wealth of different connectors and cables, including over 115 000 connection technology solutions with differing degrees of complexity.

Read more...
Pioneering connectivity for 4IR
LAPP Southern Africa Fieldbus & Industrial Networking
As industries increasingly move towards digitalisation, the need for streamlined, efficient and cost-effective connectivity solutions has never been more crucial. At the heart of this transformation is Single Pair Ethernet, a revolutionary technology that LAPP has embraced and developed to meet the evolving demands of the modern industrial environment.

Read more...
What you need to know when you start using hydrogen as your fuel source
Parker Hannifin - Sales Company South Africa Enclosures, Cabling & Connectors
OEMs are taking a more serious look at hydrogen options. Although much of the market is still focused on the potential of battery-powered vehicles, hydrogen fuel cell vehicles offer a viable supplement that is better suited for longer ranges and faster refuelling.

Read more...
SEW-EURODRIVE closes the loop with complete panel solutions
SEW-EURODRIVE Enclosures, Cabling & Connectors
In addition to its quality range of geared motors and related solutions, SEW-EURODRIVE South Africa is ‘closing the loop’ of its products by offering customers electrical control panels as part of the package.

Read more...
Simplify control panel connections
Turck Banner Southern Africa Enclosures, Cabling & Connectors
Panel builders have new tools for bringing power and signals back into protected areas with Turck Banner’s M8 and M12 receptacles.

Read more...
Control cabinet-free automation
Beckhoff Automation Enclosures, Cabling & Connectors
As a replacement for the conventional control cabinet, the MX-System from Beckhoff offers some major efficiency advantages. It also provides a great deal of optimisation potential in terms of the increasing shortage of skilled workers and the expanding presence of DC supply networks across the industry.

Read more...
Cable protection for longer runs
igus Enclosures, Cabling & Connectors
Polymer energy chain manufacturer, igus has introduced a new lighter weight e-chain for cable management and protection applications with large unsupported lengths and high fill weights. This was previously the domain of larger, more expensive energy chains.

Read more...