Motion Control & Drives


PC Control telescope surveys the skies

November 2016 Motion Control & Drives

Observatorio Astrofísico de Javalambre (OAJ), which went into operation in 2015 in the southern Aragón region of Spain, is regarded as an incredibly unique astronomical research facility. The observatory is operated by the Centro de Estudios de Física del Cosmos de Aragón (CEFCA) foundation, whose main research goal is to photometrically survey several thousand square degrees of sky. Two Javalambre telescopes with an unusually wide field of view will make it possible for the first time to record the positions of hundreds of millions of galaxies and their development in order to supply the first full 3D map of the universe. To ensure high quality and efficiency, the telescopes operate with robotic assistance, based on an industrial PC control platform.

The, CEFCA foundation is a state institute concerned with research into the development of galaxies and cosmology. Its headquarters are located in Teruel, Spain – some 40 km from the OAJ site which was constructed on the Pico del Buitre at an altitude of 1957 m above sea level. The observatory is equipped with two telescopes: the JST/T250, a telescope with a mirror diameter of 2,55 m and a 3-degree field of view, and the smaller JAST/T80, with a mirror diameter of 83 cm and a 2-degree field of view. All data from the sky surveys carried out at the OAJ are sent to the main server in Teruel via wireless communication.

EtherCAT network connects all systems and subsystems

The observatory‘s control system is based on a C6640 industrial PC (IPC) as the master control platform and various CX5000 series embedded PCs that provide decentralised control. The PC platform ensures the reliable control, monitoring and management of all systems and subsystems installed in the observatory. These systems are divided into five groups according to their location within the observatory: the operations building (Main PLC), the T080 telescope (B080), the monitoring room (BMON), the T250 telescope (B250) and the main operations building. The main control room is located in the operations building and is used for the general control of all systems, including the observatory. Even though both telescopes can be controlled from the main control room, local control rooms are available for carrying out specific tasks, such as commissioning, maintenance or other technical work.

All control nodes are linked via EtherCAT in a ring topology, as well as via an Ethernet network with a star topology. The latter links the control units of the C250 camera with the observatory‘s EtherCAT network over the EtherCAT Automation Protocol (EAP). Communication takes place via a fibre-optic cable using EtherCAT or Ethernet protocols. The high bandwidth of EtherCAT enables the transmission of status information with each cycle. A remote control centre is installed at the CEFCA headquarters in Teruel, from which the observatory can be managed, controlled and operated. The status of the OAJ is displayed in realtime on a video wall.

Embedded PC facilitates complex control of telescopes

The smaller of the two telescopes, the T80, performs some sky surveys referred to as JAST, beginning with the planned J-PLUS, a photometric multiband survey of the entire sky with expected completion in around two to three years‘ time. The results will be used to support the calibration of the astrophysical J-PAS survey, which is to be carried out with the JST/T250 telescope. In the next five years the T250 telescope will have surveyed 800 square degrees, or one fifth of the entire sky.

Installed on the T250 is a JPCam wide-field camera, specially designed for the photometric surveillance of the northern sky. It consists of a mechanical filter shutter unit and camera system. The latter consists of the cooling and vacuum systems, the CCD detector field, an optically controlled entrance window and electronics. Filter inserts, the shutter and the interface with the telescope form the mechanical basis for the unit. Four CX5020 Embedded PCs are used to control the optical lenses, the camera and the hexapod on which the camera is mounted. The control of the temperature-regulating glycol water for the camera is also performed with an embedded controller, EtherCAT slave module and inline EtherCAT terminals. The cooling system ensures that all heat is removed, including from the electronics and the shutter, so that the camera remains at a constant temperature. This prevents irregularities in the imaging due to the expansion or contraction of camera components caused by heat.

Control of the dome – an entire world of automation

The dome that covers the T250 telescope is almost 13 m in height and weighs 17 tons. It is controlled by a CX5020 embedded PC with TwinCAT 2 NC PTP software. The compact PC-based controller controls the azimuth movement, which reaches a speed of 27 m/min, the opening and closing of the windshield and the observation window, as well as the rotary movement of the dome. The entire system is driven by Beckhoff AX5xx servo drives with integrated safety option card and servomotors. Safety I/Os are also integrated seamlessly into the control system via TwinSAFE terminals. The CX5020 is connected with a slip-ring system over Profibus to a further CX5020, which is mounted in the lower, immobile part of the dome.

Mirror maintenance necessitates high-precision transport

The mirror of the T250 telescope has a diameter of 2,55 m – a precision instrument whose surface must be polished with extremely high accuracy to ensure that the deviation of the reflected beams is as small as possible. Such a mirror is valued around several hundred million Euros, which means that maintenance work, such as the renewal of the aluminium layer, requires the utmost care. The OAJ has a special aluminising room for this, in which the characteristic values of the mirror surface are meticulously maintained, remaining as close as possible to the state in which it was delivered from the factory. In view of the size and weight of the mirror, its transport to the maintenance room some 16,5 m away represents a challenge. The lifting system that moves the mirror up and down is controlled with the highest precision by an Embedded PC and a servo drive with integrated safety functionality. The speed is only 15 cm per minute – a movement that is barely perceptible to the human eye. However, each minute acceleration or deceleration could cause tiny scratches on the glass, which would result in sky observation errors.

Integrated safety technology with TwinSAFE

Many of the safety circuits in the OAJ were designed on the basis of the TwinSAFE system. “With the aid of the EL6900 TwinSAFE logic terminal, we are able to add functional groups that control the various inputs and outputs, enabling us to implement important tasks such as emergency stop, as well as power-on and power-off delays,” explains Axel Yanes, head of engineering at the OAJ. “The control system is conceived as a global platform in which all components are interconnected and the devices constantly exchange information. They interact in a synchronous manner, so our entire safety system must be able to do the same.

The safety information is transmitted via the FailSafe over EtherCAT (FSoE) protocol. With this protocol, the PLCs form a bidirectional publisher-subscriber relationship, enabling each PLC to publish a variable (publisher) and subscribe to another (subscriber). These variables must be linked within the safety logic terminal (EL6900), which treats them as safety inputs or outputs. If the EL6900 detects an error, it can publish a warning signal that is received by another CPU within the EtherCAT network, which then places its own system into a safe state.

Extensions already planned

Yanes is already devising plans for the future: “We will put some more interesting devices into operation at the OAJ. We have been able to integrate some functions in the observatory control system that hadn‘t been planned until now, such as BACnet/IP, condition monitoring and much more. We are very pleased to have Beckhoff as a technology partner. They have fulfilled our requirements with regard to a high quality, reliable and, at the same time, flexible and easy to maintain system. The global support, which we have made use of for the coordination of the project in a total of 10 countries, was also extremely valuable for us.”

For more information contact Kenneth McPherson, Beckhoff Automation, +27 (0)11 795 2898, [email protected], www.beckhoff.co.za



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Hybrid connectors for distributed automation
Beckhoff Automation Enclosures, Cabling & Connectors
Beckhoff’s ECP and ENP connector series combine power with signal and data communication by means of One Cable Automation (OCA) and thus significantly reduce cabling work.

Read more...
How vision-guided robotics is transforming South African manufacturing
Yaskawa Southern Africa Motion Control & Drives
In South African manufacturing, the final stages of production need more than manual labour or conventional automation. For many, vision-guided robotics is becoming the solution to smarter, more flexible end-of-line processes.

Read more...
Transporting substations for the world’s largest offshore wind farm
Motion Control & Drives
Dogger Bank Wind Farm will be the world’s largest offshore wind farm when it is completed. Mammoet was involved in providing transportation and weighing of the project’s three offshore substations.

Read more...
Lubrication application a key component for wire rope longevity
Motion Control & Drives
As part of its extensive work to help develop benchmarking standards for wire rope lubrication in South Africa, lubrication specialists Lubrication Engineers South Africa has found the Viper wire rope lubricator to be a key element for effective lubrication application and rope maintenance.

Read more...
Beckhoff expands economy drive system
Beckhoff Automation Fieldbus & Industrial Networking
Beckhoff’s new AM1000 servomotor joins the company’s economy drive system. The compact, powerful motor and the AX1000 servo drive provide users with a perfectly coordinated, cost-optimised drive system.

Read more...
Extreme pressure additives for oil
Wearcheck Motion Control & Drives
Extreme pressure additives - the other metal guardians in your oil additives - work their magic under pressure.

Read more...
Ultra-compact industrial PCs exploit advances in CPU technology
Beckhoff Automation Fieldbus & Industrial Networking
Beckhoff’s C60xx scalable series of ultra-compact industrial PCs combines high computing power in an extremely compact format with a wide range of options for installation in the control cabinet.

Read more...
SEW EURODRIVE sets the pace with power packs in African mining
Motion Control & Drives
Comprehensively supporting the mining sector with commodity-specific drive train solutions, SEW-EURODRIVE has cemented its reputation as a trusted partner to the industry, a testament to its customer-centric approach.

Read more...
The future of robotics
Motion Control & Drives
Research into robotics and autonomy uncovers some of the up-and-coming industrial uses and applications within the sector, including for automotives and logistics, as well as for personal and commercial use.

Read more...
Innovation award for Beckhoff’s XTS machine
Beckhoff Automation News
The Premio Innovazione award has confirmed that Tetra Pak’s Cap Applicator 40 Speed Hyper has achieved a machine solution that pushes the boundaries of conventional packaging lines with a highly dynamic mechatronic solution based on XTS technology from Beckhoff.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved