IT in Manufacturing


Enhanced machine intelligence with many-core control technology

December 2015 IT in Manufacturing

With the company’s C6670 industrial server, Beckhoff has brought to market one of the most powerful, if not the most powerful, machine controller to date, equipped with up to 36 processor cores.

This immense level of performance is harnessed most effectively via TwinCAT 3.1 automation software, exploiting the potential of each individual core to its fullest.

In this interview, managing director, Hans Beckhoff explains the benefits of such many-core machine controllers with regard to current applications and their potential for future innovations.

Hans Beckhoff.
Hans Beckhoff.

With its up to 36 processor cores, the C6670 industrial server represents a quantum leap in terms of processing performance for machine control. How did this idea come about?

Hans Beckhoff: Since the CPUs in PCs are among the most powerful processors available today, we offer cutting-edge performance with our PC-based control technology. We continuously push the envelope in automation, based on the advances made in modern processor technology as predicted by Moore’s Law. Current starter processors feature four or eight cores, but processors with up to 64 cores will be considered standard in only a few years. We believe that machine designers should be able to employ a many-core platform already today, either for highly demanding automation tasks or as a visionary operating platform.

From left to right: Hans  Beckhoff, Dr Josef Papenfort, Dr. Dirk Janssen and Stefan Hoppe at the presentation of many-core control at the SPS IPC Drives 2014.
From left to right: Hans Beckhoff, Dr Josef Papenfort, Dr. Dirk Janssen and Stefan Hoppe at the presentation of many-core control at the SPS IPC Drives 2014.

What are the benefits of such a visionary operating platform?

Hans Beckhoff: Development towards more and more processor cores will continue unabated. When you have 10 or 20 times more computing performance at your disposal, you can base your machine control technology on a whole new set of innovative concepts. However, since three to five years is not a lot of time to develop a totally new software architecture, the users of automation technology would be well advised to begin this endeavour today. The C6670 industrial server provides the ideal platform to evaluate what a 24-core or 36-core computer can provide for the respective customer application. Machine manufacturers should take advantage of this opportunity since employing such a powerful controller already delivers tangible application benefits for sophisticated automation tasks today.

To what extent are control applications actually suited for such a multi-core architecture?

Hans Beckhoff: Automation technology is the ideal area for multi-core architectures because modern machines comprise a wide range of function modules and many positioning axes. These all operate simultaneously and can be very effectively mapped via individual control programs that run side-by-side. TwinCAT 3 provides optimal support for this approach with its many-core focused features, such as many-core PLC and motion or core isolation, making the parallel control architecture easy to implement. In addition, the high performance EtherCAT communication bus is able to transmit huge data volumes deterministically and with short cycle times. This enables machine builders to test the parallel control architecture on their machine and use the results to develop next generation control technologies.

With TwinCAT 3. individual machine functions can be efficiently assigned to as many as 36 processor cores.
With TwinCAT 3. individual machine functions can be efficiently assigned to as many as 36 processor cores.

Which application benefits of the C6670 industrial server can you already implement today?

Hans Beckhoff: We already encounter many highly complex automation applications, such as in wind farm simulations, for example. A single C6670 can reduce the amount of computer hardware required by taking the place of several conventional PCs. This also enables you to replace the data communication between multiple computers with much faster software-to-software communication.

Particularly in machine engineering, we see the tendency to implement many more motion axes, operating them in an ever more dynamic manner and with more complex algorithms. The tremendous performance of the industrial server eliminates many restrictions in machine design. For instance, you can have 200 or more adjustable axes plus integrated measurement functions and condition monitoring feature – all of which falls in line with our concept of Scientific Automation. You can even integrate a vision system – most of which are still running on separate computers these days – into such a centralised computing platform and make image processing more of a standard feature on the machine.

Does this mean that you can develop more powerful machines and systems for all industries?

Hans Beckhoff: Yes, you can, especially in areas where our eXtreme Fast Control (XFC) technology is employed. Many-core control and XFC increase not only the performance of machines and systems – they also improve the product quality with their highly precise and extremely fast control processes, while minimising the consumption of energy and raw materials. In summary, they deliver significant economic advantages as well as sustainability benefits.

Is the C6670 industrial server suited only for centralised control concepts or also for distributed designs?

Hans Beckhoff: The industrial server is mainly a central data processing unit that makes computing, storage and communication capacities available locally. With our modular and scalable control technology, however, we support both concepts as a rule. A large assembly line, for example, is ideal for an automation architecture that features small, distributed controllers. For a packaging or tooling machine with many coordinated movements and conditions, on the other hand, a centralised solution would be the better option. However, our server technology has become so powerful that these distinctions are becoming rather fluid. In concepts with a modular, aggregate-oriented design of controller and machine, the intelligence could be implemented either locally in the individual modules or in a central industrial server using appropriate software modules and fast EtherCAT communication technology.

What about applications with typical server functionalities?

Hans Beckhoff: With its enormous processing performance, the C6670 is also capable of providing true server functions in industrial applications such as those promoted via Industry 4.0. For instance, you might transfer complex mathematical functions to the industrial server in order to enable less powerful controllers to handle the condition monitoring, such as for vibration analysis tasks. This would be a so-called service-based concept, where complex automation services run on a powerful server in order to remove some of the workload from the actual machine controller. If you have a communication bandwidth that is sufficiently fast and deterministic, such a server could even run in the cloud. With the C6670, however, you can provide the necessary performance on-site at the machine or line.

For more information contact Kenneth McPherson, Beckhoff Automation, +27 (0)11 795 2898, [email protected], www.beckhoff.co.za



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Buildings in Africa’s urban evolution
Schneider Electric South Africa IT in Manufacturing
Africa is now an urban continent. How does the continent mobilise to accommodate urban dwellers and maintain and implement critical infrastructure that allows for this expansion? Building management systems provide a tangible solution to optimise resource use, lower operations costs and ultimately contribute to a growing continent that also employs green practices.

Read more...
Black Rock Mining centralises mining operations with AVEVA
IT in Manufacturing
Black Rock Mine Operations replaced and upgraded its existing infrastructure, and installed additional capacity to expand production from 3 to 4,6 million tons in three years. The new system is powered by a suite of AVEVA solutions.

Read more...
The strategic role of technology in today’s economy
IT in Manufacturing
In an era of economic uncertainty and persistent market volatility, businesses are under immense pressure to manage costs while maintaining operational effectiveness. The role of chief information officers and chief technology officers has never been more critical, as they are tasked with leveraging technology not just as a tool for efficiency but as a strategic asset in navigating these turbulent times.

Read more...
Minutes to meltdown: surviving a cyber attack
IT in Manufacturing
Commvault recently hosted its Minutes to Meltdown event. Led by the company’s security experts, this was an interactive and detailed ransomware attack simulation designed to help companies understand how to respond in the event of a cyber attack.

Read more...
Siemens elevates automotive and aerospace simulation
Siemens South Africa IT in Manufacturing
Siemens Digital Industries Software has announced the latest update to its Simcenter portfolio, delivering advancements in aerostructure analysis, electric motor design, gear optimisation and smart virtual sensing. These enhancements are designed to streamline workflows, accelerate certification and provide deeper insights into system performance.

Read more...
Automation in 2025: Navigating manufacturing innovation without the risk
IT in Manufacturing
During 2025, a wave of innovative technologies is expected to disrupt and change the way IT is applied to automation systems. The challenge lies in balancing the reliability of proven techniques with the potential of new technologies, all while minimising and controlling risk. This article explores ways to approach the latest information technologies effectively in a manufacturing context.

Read more...
South Africa’s AI revolution is here – but are we secure?
IT in Manufacturing
South African businesses are sprinting to embrace generative AI, lured by its potential to drive efficiency, productivity and innovation. But here’s the stark reality: without a rock-solid cybersecurity foundation, AI will become a Trojan horse, opening the floodgates to sophisticated cyber threats.

Read more...
Shaping data resilience strategies with AI and hybrid cloud solutions
IT in Manufacturing
In today’s rapidly evolving digital landscape, organisations are under growing pressure to secure their operations against increasingly sophisticated cyberthreats, including those that leverage AI to enhance the success rate of attacks. In this landscape, it has become essential to ‘fight fire with fire’ – harnessing AI as a means to counter these threats.

Read more...
Cloud or on-prem? Decoding the choices for South African enterprises
IT in Manufacturing
The debate between on-premise and cloud computing architectures remains a prominent topic among businesses, particularly in South Africa.

Read more...
Advancements in wire rope testing
IT in Manufacturing
Being able to get instant, real-time and portable detection of wire rope flaws can make a significant difference for operational teams. There have been a number of significant technological advancements and tools entering the market that help wire rope operators detect and resolve problems faster.

Read more...