Project management has as many definitions as there are types of methodologies. Yet, regardless of the definition, there is always a common theme: budget, time and resources.
There is no confusion that in order for any project to be successful, it must satisfy certain constraints. It must be completed within a specified time, it must be completed within a specified budget, and it must be completed with the use of assigned resources.
In order to ensure the correct tracking of the success of a project, project management tools are applied. These include a combination of templates and processes designed to answer questions such as:
• What business situation is being addressed by the project?
• What does the business need to do in order to achieve the objective?
• What will the business do?
• How will it be done?
• How will the business know when the objectives have been accomplished?
• How will the business measure how well it did?
Effectively, as one author put it, project management is organised common sense.
This clear view on the goals and the solution led businesses to the adoption of a traditional management life cycle with the steps of Scoping, Planning, Launching, Monitoring and Controlling and finally Project Closeout. Whilst this approach worked beautifully, it became a challenge for technology projects where the goal was clear yet the solution was not.
As a result, numerous new methodologies were created to deal with these challenges. These became variations of the traditional project management lifecycle and adopted many names including Waterfall, Rapid Prototyping, Scrum, Iterative and Adaptive. Collectively these project management life cycle models are termed agile project management.
Effectively, agile project management is the application of agile principles to traditional project management.
The adaptive methodology applied to a DCS upgrade project with positive results
Iterative and adaptive
The DCS upgrade project was broken into four separate projects, each with its own project management lifecycle. The execution of the individual components ensured that learning from one component could be used to make the next project component even more efficiently executed. This approach could be described as amplified learning as each adaptation of a solution was an iteration of a previous solution.
Customer is king
From the onset of the project it was made clear to the project team that the highest priority is to satisfy the customer. This meant that the true measure of success was not only an operational DCS, but also a client who received exactly what they had in mind when the order was placed.
In order to satisfy any evolving needs of the client, the project methodology was to make decisions as late as possible, keeping all options open for as long as possible. This allowed the project team to respond to any late changes. It also allowed different solutions to be explored without being locked into any inefficient solutions that might have been made without all the proper information, allowing all the accumulated learning to be incorporated into the project.
Effective communication
In order to maximise on the effectiveness of communication, the preferred method was to have only face to face meetings. This had a dual effect, it allowed for the project team and the client to meet frequently throughout the life of the project and it also reinforced a common understanding of the goals between the client and the project team.
Self-organising teams
One of the key principles of agile management is to drive the project via self-managing teams, acknowledging that the best architectures, requirements, and designs emerge from self-organising teams. The overall philosophy was to build the project plan around motivated individuals, giving them the environment and support they needed and trusting them to get the job done.
The project was structured to have four individual teams with each team tasked with executing a section of the upgrade. These teams were supported by a layer of technical specialist that offered support where needed. This was further enhanced by the creation of an open, honest and creative environment, where team members could contribute ideas which they deemed would be beneficial to the success of the project. This allowed the creativity of the individual team members to be harnessed.
From the outset, the teams were made aware of the overall solution and how the success or failure of one team would affect the others. This resulted in teams that not only worked independently as efficiently as possible, but that also pulled each other towards the achievement of the overall goal.
Overall goal
Each element that was introduced into the project had to pass through the filter of waste elimination with a response to the question: “Will this add business value?” If the answer was no, then it was excluded.
In addition, it was ensured that at regular intervals the teams reflected on how to become more effective and then adjusted their behaviour accordingly. This was combined with acknowledging that simplicity was key and the art of maximising the amount of ‘work’ not done was essential.
Conclusion
This approach resulted in a DCS upgrade project that underwent three months of planning, and only five days of execution with a smooth changeover that resulted in no loss of production hours. It was also found that the agility of the project management approach allowed the project team to welcome changes in requirements, even late in the project. The success of the project is testament to the fact that continuous attention to technical excellence and good design practice enhances agility.
For more information contact Paul Sikhakhane, Tongaat Hulett, +27 (0)32 439 4368, [email protected]
© Technews Publishing (Pty) Ltd | All Rights Reserved