Fieldbus & Industrial Networking


Wireless monitoring solution at Optimum Coal

Technews Industry Guide - Wireless 2014 Fieldbus & Industrial Networking Industrial Wireless

Optimum Coal – Koornfontein, is a coal processing plant in Mpumalanga situated between Emalahleni (Witbank) and Hendrina. The plant, spread over a wide geographic area as shown in the satellite photograph, needed to draw information from the remote pump stations located at the dams and bring it back to the central control room for processing. The distances involved (over 2 km) ruled out the possibility of a wired solution, which meant that a wireless telemetry network would be required. It was at this point that Allpronix was brought in to assist with the design architecture.

“What was initially required was to bring the water levels back to the central scada system for monitoring and control purposes,” says Allpronix field and instrument engineer, Jurie Weidemann. “But subsequently we found that there were other areas of the plant that could benefit from the wireless telemetry system we had in mind.

“There are currently a total of 8 main wireless links that are being used for plant monitoring, telemetry and PLC/scada diagnostics and troubleshooting. The network is a combination of 5 and 2,4 GHz components, the 5 GHz with its faster data rate is used as the backbone network to cut down on possible interference and the 2,4 GHz is used for the close proximity links. As the plant expands, more links will be added to the network with a total of 35 CPEs (customer premises equipment) expected to make up the final wireless network spread across the plant and surrounding pump stations.”

Equipment used in the network design so far includes:

* Airlive Outdoor wireless CPEs: 2,4 GHz – 802.11g compliant max 54 Mbit/s.

* Airlive Outdoor wireless CPEs: 5 GHz – 802.11a/n compliant with 1T1R technology max 150 Mbit/s.

* I/O over Ethernet: Acromag. Korenix JetNet 2005 – unmanaged 5-port switch.

The Airlive CPEs are powered using passive POE through 12 VDC POE injectors via the shielded CAT5 cable used to connect to the network through Allpronix supplied Korenix 2005, 5 port, as well as other unmanaged switches. The RJ45 connectors are wired as patch cables according to the T568B colour code as set out by the TIA/EIA-568 standard: http://en.wikipedia.org/wiki/TIA/EIA-568

Project progress: problems experienced, corrective action and fine tuning

In South Africa, there are 13 available channels for 2,4 GHz CPEs. Initially, the network was set up ad-hoc, with not much attention given to interference between channels or interference from power lines and other sources. The drawback using 2,4 GHz is that the frequency of the harmonics generated by heavy electrical machinery and power lines are often in this range and can therefore cause interference. Also, due to channel overlap, it is best practice to have five degrees of separation between the channels of neighbouring access points.

Figure 1. 802.11b/g channels in 2,4 GHz band.
Figure 1. 802.11b/g channels in 2,4 GHz band.

As shown in Figure 1, channels 1, 6 and 11 do not interfere with each other at all. Figure 2 shows how the channels and access points can be arranged to avoid interference when the concentration of access points is high.

Figure 2. Channel separation.
Figure 2. Channel separation.

“We encountered interference primarily on two of the wireless links, namely the link from ‘Plant 3 Control Room’ to ‘C22 Tower’ and the link from ‘C22 Conveyer’ to the ‘FilterPress’,” explains Weidemann. “These two links would work fine for intervals, but would then require a reboot to re-establish the network. The stability of these two links has subsequently been vastly improved by replacing the existing 2,4 GHz CPEs with Airlive’s AirMax5N-ESD, 5 GHz versions, while still keeping possible channel interference in mind. Each link is established by setting up one CPE as an access point and the other as a client. AirMax units are directional and the 16 dBi internal antenna provides the necessary transmitting power to establish reliable wireless communication on a stable 5 GHz frequency band.”

The table shows the current network layout.

Figure 3 shows the network topology of the current links as well as the ‘project in progress’ links. It also shows where there are PLCs and switches that connect all the wireless units to the main network.

Figure 3. Topology diagram.
Figure 3. Topology diagram.

“As is evident from the diagram, this project is a work in progress and as there is still plenty of plant expansion in the pipeline, the telemetry network will have to grow as required in order to meet the increased demand,” concludes Weidemann.

For more information contact Jurie Weidemann, Allpronix, +27 (0) 11 795 9500, [email protected], www.allpronix.com



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

EtherCAT interoperability removes industrial networking barriers
Fieldbus & Industrial Networking
Selecting the right communication technology is one of the most important decisions engineers make, and interoperability helps with that decision. Key development tools and standards ensure interoperability among many EtherCAT devices and manufacturers.

Read more...
Condition monitoring to go
Turck Banner Southern Africa Fieldbus & Industrial Networking
Anyone who wants to efficiently monitor the climate in control cabinets will find a comprehensive range of control cabinet monitors for the DIN rail in Turck Banner’s cabinet condition monitoring family.

Read more...
Innovative separation of recyclable materials
Beckhoff Automation Fieldbus & Industrial Networking
A plant built by Belgian specialist machine builder, Absolem Engineering features an innovative process for separating recyclable materials. Using PC-based control from Beckhoff, a major problem has been elegantly solved - the generation of different signal sequences for the exact synchronisation of different camera systems.

Read more...
Enhancing AI-powered object detection and recognition capabilities
Vepac Electronics Fieldbus & Industrial Networking
Innodisk has announced its cooperation with Advantech, a global leader in AIoT and edge computing. This collaboration leverages Innodisk’s customisable MIPI camera modules and Advantech’s Intel x86-based AFE-R360 solution to enhance AI-powered object detection and recognition capabilities, expanding visual applications for autonomous mobile robots in smart factories and warehouses.

Read more...
Rugged, agile and scalable boards
Vepac Electronics Fieldbus & Industrial Networking
Embedded computing pioneer, AAEON has launched the PICO-ASL4 and GENE-ASL6, both featuring the new Intel Atom x7000RE Processor Series for the edge.

Read more...
Rugged gateway board with open-source flexibility
Vepac Electronics Fieldbus & Industrial Networking
The SRG-CM4 from Vepac brings all the open-source flexibility of the Raspberry Pi OS and ecosystem to AAEON’s signature rugged, durable gateway design to create a truly industry-ready modular system.

Read more...
New safety I/O modules for functional safety in highly automated operations
Fieldbus & Industrial Networking
Belden has expanded the Lumberg Automation LioN family with its new LioN-Safety I/O Modules. Designed to support functional safety efforts in industrial operations, the modules streamline the transmission of data over existing networks.

Read more...
IO-Link master for the automation and IT world
ifm - South Africa Fieldbus & Industrial Networking
The decentralised IO-Link master modules from ifm serve as a gateway between intelligent IO-Link sensors and the fieldbus. Important information on the intelligent sensors can also be simultaneously sent.

Read more...
Condition monitoring with IO-Link rotary encoders
Pepperl+Fuchs Fieldbus & Industrial Networking
Whether in the materials handling industry, in packaging machines or in wind turbines, sensors with an IO-Link interface are increasingly being used to pave the way to Industry 4.0. Pepperl+Fuchs was one of the first manufacturers to launch an absolute rotary encoder with IO-Link interface, that was available in numerous variants and with a wide range of setting parameters.

Read more...
Efficiently consolidate analogue signals and reduce wiring
Turck Banner Southern Africa Fieldbus & Industrial Networking
Control engineers can bring analogue signals into a control system more efficiently with the new R95C 8-port analogue input to modbus hub.

Read more...