IT in Manufacturing


Industrie 4.0 and the Industrial Internet of Things

July 2014 IT in Manufacturing

Again this year, ‘Industrie 4.0’ was a dominant theme at the Hanover Fair in Germany. It seemed as if every vendor’s stand featured a visible reference and product tie-in to this strategic initiative of the German government that is supported by various related working groups.

We saw large, elaborate production mock-ups illustrating the way products and production robots would someday collaborate to accomplish the required production steps. In some cases, existing solutions were recast as Industrie 4.0 solutions. In other cases, significant technological advances were only revealed in one-on-one discussions at the stand. We also saw demonstration systems that showed how hardware, software, and communications technology can work in concert today to support many of the tenets of Industrie 4.0. Despite this, Industrie 4.0 should be considered an evolutionary journey, not a near-term disruption.

Industrie 4.0 provides a vision of a future factory in which smart products collaborate with smart workstations to move through production in an effective, efficient, and flexible manner. Each unit produced can be personalised and changes can be accepted throughout production. Individual production assets optimise their resource and energy consumption. Top-down planning is minimal, or even unnecessary. And production systems adapt to the needs of humans, instead of vice versa. This vision is still several years from becoming reality, but it’s interesting to note that many of the needed technologies are already available, if not yet in widespread use.

Characteristics of Industrie 4.0 production systems

Among the expectations for Industrie 4.0 are replacing the traditional hierarchical structures common in today’s automated production systems with cyber-physical systems (CPS) or Internet of Things technologies. These changes will enable plants in which products control their own manufacturing process and quality outcome. Some anticipated characteristics of the Industrie 4.0 manufacturing model include:

* Standalone workstations instead of a sequenced assembly line.

* Smart products move autonomously among workstations until their assembly is completed.

* Easy product personalisation.

* Dynamic reconfiguration of production routes to optimise flow.

* CPS/IoT-enabled workstations.

* Smart carriers with RFID (for example) as proxies for smart products.

* Products know what has been done to them and what needs to be done.

* Products communicate with workstations.

* Workstations collaborate with each other and with products.

* Workstations write status updates to products; can change downstream requirements.

* Workstations are outfitted with quality measurement and other sensors.

* Continuous optimisation of energy and resources.

* MES or advanced software monitors sensors, communicates with workstations and products, orchestrates workflow, analyses data and documents, traceability.

* Products may collaborate with humans for special cases, rework, or for manual operations.

* Manual operations are supported with assistive technologies such as 3D visualisation and augmented reality.

Industrial Internet of Things

Many parts of the Industrie 4.0 vision will be enabled by advances in the Industrial Internet of Things, and some of these are already available. People will participate by having access to much more data, better analytics tools and better information, and will increasingly make decisions based on the analysis generated by these resources.

Connected assets and devices

Intelligent connected assets include machines or other assets enabled with sensors, processors, memory and communications capability. These assets may have an associated virtual model and may support software-defined configuration and performance. Eventually, some intelligent assets (work-stations) will operate autonomously in collaboration with products being made and other workstations. Intelligent assets will generate more data and share information across the value chain.

Connectivity infrastructure

The Industrial IoT will offer a multi-layer infrastructure that allows information from products, sensors, devices, machines, assets and other entities to be used by other authorised systems. The glue that links devices to higher layers of the architecture is the connected device management (CDM) platform. CDM platforms, functionality goes beyond simple device connectivity and SIM card management to include device configuration, device management and creating and executing device-level applications.

In addition to the Internet, data communications between the smart assets and other entities will often leverage wireless network technologies such as LTE, ZigBee, Wi-Fi, IEEE 802.15-4, and cloud-based computing infrastructure with storage to accommodate Big Data requirements.

Software and analytics

Powerful analytics and related software will help optimise both production assets and production systems. Predictive analytics will be deployed to reduce unplanned downtime. Newly available information generated by these tools will lead to new, transformative business models supported by new applications. Instead of offering physical products for sale, companies will increasingly offer products ‘as a service’. Over time, new software solutions will emerge to enable the self-organising, autonomous behaviours foreseen in the Industrie 4.0 vision.

Solutions already available

Industrie 4.0 may be seen as an evolution to a new manufacturing architecture, but that doesn’t necessarily mean that manufacturers should take a ‘wait and see’ attitude. Some of the Industrial Internet of Things technologies and solutions are already available and can deliver benefits now. Examples include solutions for well pump monitoring and optimisation, LNG turbine engine condition monitoring, utility meter monitoring and analysis, wind farm power optimisation, mine performance, food safety assurance and water plant remote monitoring and prognostics.

For more information contact Paul Miller, ARC Advisory Group, +1 781 471 1126, [email protected], www.arcweb.com





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Development of motor control units for automotive industry
Siemens South Africa IT in Manufacturing
SEDEMAC has adopted the Siemens Xcelerator portfolio of industry software, which is used in the development of its motor control units and engine control units. The motor control units are used in EVs, hybrids, ebikes and power tools, while the engine control units are used for off-road and on-road engines.

Read more...
Cybersecurity and cyber resilience – the integrated components of a robust cyber risk management strategy
IT in Manufacturing
Organisations continuously face numerous cyberthreats in today’s digital landscape, and while many prioritise cybersecurity to safeguard digital assets, their strategies for cyber resilience often become neglected.

Read more...
Sustainable last-mile delivery electric trucks
Siemens South Africa IT in Manufacturing
Workhorse Group, an American technology company focused on pioneering the transition to zero-emission commercial vehicles, has adopted the Siemens Xcelerator portfolio of industrial software as it builds electric trucks for sustainable last-mile delivery.

Read more...
South Africa’s role in the AGI revolution
IT in Manufacturing
AI has found its way into general conversation after the emergence of large language models like ChatGPT. However, the discussion is increasingly turning to the search for Artificial General Intelligence (AGI), which could entirely change the game.

Read more...
Predictive asset performance management with ABB Ability Genix
ABB South Africa IT in Manufacturing
The ABB Ability Genix APM suite is a comprehensive asset management platform powered by AI, IIoT and model-based predictive data analytics. This enables a paradigm shift towards a more proactive and predictive asset management approach.

Read more...
Intelligent automation primed for $47 billion revenue by 2030
IT in Manufacturing
According to GlobalData, the intelligent automation market is set to grow from $18 billion in 2023 to $47 billion in 2030, driven by advancements in AI, particularly the rapid adoption of generative AI.

Read more...
Chocolate manufacturing with Siemens Xcelerator
Siemens South Africa IT in Manufacturing
Freybadi, one of the largest chocolate manufacturers in Indonesia and a trusted supplier of chocolate in the Asia-Pacific, Middle East and African regions, has adopted the Siemens Xcelerator portfolio of industry software to optimise its manufacturing and production processes.

Read more...
A CFO’s guide to unlocking the potential of gen AI
IT in Manufacturing
CFOs of leading global organisations understand that their role extends beyond mere financial oversight; they are pivotal in steering organisation-wide transformation, particularly in the realm of technological advancement.

Read more...
Higher level cybersecurity certification for Schneider Electric
Schneider Electric South Africa IT in Manufacturing
Schneider Electric’s EcoStruxure IT NMC3 platform has obtained a new and higher level of cybersecurity certification, making it the first data centre infrastructure management network card to achieve SL2) designation from IEC.

Read more...
Industrial automation edge AI
Vepac Electronics IT in Manufacturing
Teguar, a leading provider of industrial computer solutions, has announced an innovative partnership with Hailo, an AI chip maker renowned for its high-performance edge AI accelerators. This marks a significant step forward in Teguar’s mission to provide powerful and reliable computing solutions for a wide range of industries.

Read more...