IT in Manufacturing


Automation markup language emerges

August 2012 IT in Manufacturing

While companies in the manufacturing industries face many challenges, reducing costs and time-to-market both appear near the top of the list for many CEOs. Since engineering speed and efficiency can reduce the time it takes to bring new products to market and engineering and commissioning costs typically represent a considerable percentage of a manufacturing company’s overall cost structure, virtually all manufacturers today have invested in engineering tools.

Unfortunately, while modern engineering tools can help reduce engineering time and effort and increase productivity to a significant degree, tools for different engineering disciplines often lack interoperability due to incompatible data formats. This means that the same data must be entered multiple times into the different engineering tools used across engineering disciplines. These include mechanical plant engineering, electrical design, process engineering, process control engineering, HMI development, PLC programming, and robotics programming. This increases time, cost and effort, and introduces the potential for errors.

The goal of the European-based AutomationML initiative is to provide a common format, enabling data exchange and interoperability between the disparate engineering tools.

The problem of data exchange between engineering tools

As companies use many different engineering tools to work on an object in the production process, seamless exchange of data between these tools is of paramount importance. But different engineering tools have different, often incompatible, data formats. This makes it difficult, if not impossible, to exchange data.

A common solution is to write custom export and import tools to transfer the data files from the source engineering tool into the target engineering tool using pair-wise data exchange. The problem with pair-wise data exchanges between engineering tools is that the file export/import between the different engineering tools gets confusing. This approach also consumes significant engineering time, since custom exporters and importers need to be written for each and every engineering tool. Obviously, this also requires engineers to understand the different data formats for the wide variety of engineering tools used across most manufacturing companies.

Different approaches possible

A successful solution to the problem of exchanging data between different engineering tools must be easy, fast, scalable and backwards traceable. One possible approach, a common database, would require that multiple vendors develop their engineering tools in a harmonised manner. While this would be very helpful for users, it would also tend to inhibit innovation.

Another approach is to have a common data format for all engineering tools. This might be achieved through semantic standardisation, but also has disadvantages. It would require the feedback from users and tool vendors, but the tool vendors prefer to wait for the standardisation process to be completed.

Data exchange with AutomationML

The Automation Markup Language (or AutomationML) interface enables data from different engineering tools to be exported and imported without confusing and time-consuming procedures.

AutomationML started in 2006 as an industry consortium led by Daimler. The AutomationML association was founded in 2009 by Daimler, ABB, Siemens, the University of Magdeburg, the Fraunhofer IITB, NetAllied Systems, and Zühlke Engineering. The association now has 25 member companies in Europe and is growing. The purpose of the association is further to develop an open and licence-free interface to improve the engineering process via standardised data exchange between engineering tools.

Recent developments

In May 2012 the new engine, AutomationML 2.01, was released together with a new editor that simplifies the creation of exporters and importers. At a recent user conference in Germany, the AutomationML association presented and explained its new tools and engine to generally favourable response. This should help increase user support for the initiative.

How does AutomationML work?

AutomationML works as a common data format. Exchanging data between different engineering tools is accomplished by simply exporting the data into the common format. The private data of an engineering tool is exported to a neutral data format that other engineering tools can import and use. To export data, each exporting engineering tool needs to have an exporter that ‘translates’ the private data of the source engineering tool into the neutral data format.

To import the data from the neutral data format, each importing engineering tool needs an importer. This importer ‘translates’ the neutral data format into the language of the importing engineering tool.

As complex as this sounds, compared to having to write exporters and importers for every engineering tool language used across the engineering process, using the AutomationML format can save a lot of time. Users of AutomationML say that they were able to configure exports and imports within a few hours, depending on the amount of data. The AutomationML Association provides app-like tools that make it easy for users to configure the needed exporters and importers.

Can AutomationML support collaborative functionality?

AutomationML can help support collaborative processes. Intermediate software based on AutomationML manages data exchange, tracks responsibilities, and mediates and exchanges data.

ARC Advisory Group believes that an intermediate tool built on AutomationML could enhance collaboration. The AutoCAD user owns the data. He or she allows parts of his/her private data from this engineering tool to be edited by others and sets rights through the intermediate software. Users could also trace who has made which changes by using version management in the intermediate software. The AutomationML association can provide users with this kind of intermediate software.

Not appropriate for all situations

ARC expects that companies that use a variety of different engineering tools and are currently using manual data exchange between these tools could potentially gain significant benefits from AutomationML, particularly if their goals include being able to reduce the time required to bring products to market and the associated engineering effort and costs.

However, both the source and target engineering tools must meet some preconditions. For instance, source data must be exportable into AutomationML. To this end, the AutomationML association must provide users with a tool to determine whether or not their current engineering tools fit this important precondition to the benefits of AutomationML.

For more information contact Paul Miller, ARC Advisory Group, +1 781 471 1126, [email protected], www.arcweb.com





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Buildings in Africa’s urban evolution
Schneider Electric South Africa IT in Manufacturing
Africa is now an urban continent. How does the continent mobilise to accommodate urban dwellers and maintain and implement critical infrastructure that allows for this expansion? Building management systems provide a tangible solution to optimise resource use, lower operations costs and ultimately contribute to a growing continent that also employs green practices.

Read more...
Black Rock Mining centralises mining operations with AVEVA
IT in Manufacturing
Black Rock Mine Operations replaced and upgraded its existing infrastructure, and installed additional capacity to expand production from 3 to 4,6 million tons in three years. The new system is powered by a suite of AVEVA solutions.

Read more...
The strategic role of technology in today’s economy
IT in Manufacturing
In an era of economic uncertainty and persistent market volatility, businesses are under immense pressure to manage costs while maintaining operational effectiveness. The role of chief information officers and chief technology officers has never been more critical, as they are tasked with leveraging technology not just as a tool for efficiency but as a strategic asset in navigating these turbulent times.

Read more...
Minutes to meltdown: surviving a cyber attack
IT in Manufacturing
Commvault recently hosted its Minutes to Meltdown event. Led by the company’s security experts, this was an interactive and detailed ransomware attack simulation designed to help companies understand how to respond in the event of a cyber attack.

Read more...
Siemens elevates automotive and aerospace simulation
Siemens South Africa IT in Manufacturing
Siemens Digital Industries Software has announced the latest update to its Simcenter portfolio, delivering advancements in aerostructure analysis, electric motor design, gear optimisation and smart virtual sensing. These enhancements are designed to streamline workflows, accelerate certification and provide deeper insights into system performance.

Read more...
Automation in 2025: Navigating manufacturing innovation without the risk
IT in Manufacturing
During 2025, a wave of innovative technologies is expected to disrupt and change the way IT is applied to automation systems. The challenge lies in balancing the reliability of proven techniques with the potential of new technologies, all while minimising and controlling risk. This article explores ways to approach the latest information technologies effectively in a manufacturing context.

Read more...
South Africa’s AI revolution is here – but are we secure?
IT in Manufacturing
South African businesses are sprinting to embrace generative AI, lured by its potential to drive efficiency, productivity and innovation. But here’s the stark reality: without a rock-solid cybersecurity foundation, AI will become a Trojan horse, opening the floodgates to sophisticated cyber threats.

Read more...
Shaping data resilience strategies with AI and hybrid cloud solutions
IT in Manufacturing
In today’s rapidly evolving digital landscape, organisations are under growing pressure to secure their operations against increasingly sophisticated cyberthreats, including those that leverage AI to enhance the success rate of attacks. In this landscape, it has become essential to ‘fight fire with fire’ – harnessing AI as a means to counter these threats.

Read more...
Cloud or on-prem? Decoding the choices for South African enterprises
IT in Manufacturing
The debate between on-premise and cloud computing architectures remains a prominent topic among businesses, particularly in South Africa.

Read more...
Advancements in wire rope testing
IT in Manufacturing
Being able to get instant, real-time and portable detection of wire rope flaws can make a significant difference for operational teams. There have been a number of significant technological advancements and tools entering the market that help wire rope operators detect and resolve problems faster.

Read more...