IT in Manufacturing


Data acquisition over TCP/IP

February 2012 IT in Manufacturing

Emerging challenges for data acquisition networks have come to include guaranteeing data acquisition across the Internet and building automation interoperability to work with the cloud. As an environment less stable and far less secure than circumscribed LANs, working ‘in the cloud’ has forced a reconsideration of communication parameters like timeout margins, connection checks and packet validation as guarantees for robust and secure data acquisition are re-engineered for use on public networks. Interoperability presents another, related challenge: system integrators are commonly called upon to custom-code sockets for a wide variety of client hardware, costing clients time and money in installation and troubleshooting. For all these reasons, thoroughly tested, standardised server software and data processing clients can introduce important simplifications that give tangible benefits in deployment, network efficiency and connection reliability.

Push-based data acquisition for robust and efficient networks

The push-based data acquisition model is a networking design innovation that reduces data congestion to give better connection reliability and higher throughput. Push technology shifts the responsibility for data updates from the OPC server to individual remote I/O and RTU controllers. Instead of steadily sending out polling requests to each remote device (and occupying precious bandwidth), the remote I/O and RTU controllers themselves poll the attached I/O modules and send reports back to the OPC server only as required.

With effectively engineered push technology, I/O status gets updated when one of three events occurs:

* An I/O status change is reported by a sensor.

* A pre-configured interval is reached.

* A request is issued by a user.

This shift in software architecture cuts metadata transmissions across the network, freeing up bandwidth for faster I/O response times and fewer dropped packets. With I/O sensors that broadcast information only when required, alarms and data updates are all expedited, maximising system response time for significant improvements.

Streamlining database functions

Automated database functions are another way to achieve more reliable connectivity. During daily operations, most remote data acquisition systems require periodic human interaction and management for remote data collection and/or database uploads. In this process, software is often required to facilitate conversion and logging. So, providing automatic solutions to manage this work makes it simpler, quicker, and, if properly engineered to help with day-to-day system administration and data analysis, also more robust.

A database gateway functions as a bridge between delivered data and the relational databases into which data is converted and collated. To be effective, gateways should be a simple-to-configure client that performs preliminary processing and tagging and, when needed, may automatically retrieve and process I/O data for storage either in the central database or locally, for on-demand analysis. Database gateways can thus further reduce deployment efforts, while guaranteeing critical I/O data is more immediately available to administrators and users.

Saving data from spotty networks

Finally, because Internet failures are still relatively commonplace, a robust mechanism for offline data-collection is an important mitigating feature for cloud-based data acquisition networks. The most obvious and straightforward approach would be for the remote I/O module or RTU to maintain its data collection activity and store that data for re-transmission when the network goes back on-line. Oddly, few automation software packages currently offer this functionality; yet this feature is quite simply implemented on push-based systems, and central to Moxa’s Active OPC Server and DA-Center software package.

A real-world example

Here is how an actual implementation might work with all three techniques employed. A large solar power grid with hundreds of solar panels means a large number of I/O points are involved, so using traditional custom-coded polling techniques introduces high deployment and maintenance costs. Instead, smart I/O modules and RTU controllers like the ioLogik W5300 can use push-based data acquisition to report solar panel temperature and status over the network. Coupled with Moxa’s bundled Active OPC Server, users can access the status of all solar panels in the field in a network-efficient manner, while built-in offline storage fail-safes ensure that up to 32 Gb of data may be supplemented should network connectivity be lost. Further, DA-Center software (also free) can be installed alongside Active OPC Server to automate the conversion, analysis and storage of this data for fast availability.



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Prefabricated data centres for an AI-focused future at the edge
Schneider Electric South Africa IT in Manufacturing
As AI technologies continue to advance, data centres are being pushed to the edge, reshaping their operations to meet daily demands. To meet the relentless demands of AI workloads at the edge, prefabricated data centre solutions offer a scalable, efficient and fast alternative to traditional builds.

Read more...
Quantum computing and its impact on data security: a double-edged sword for the digital age
IT in Manufacturing
Quantum computing is poised to redefine the boundaries of data security, offering groundbreaking solutions while threatening modern encryption’s foundations. For third-party IT providers, this duality presents both a challenge and an opportunity to lead organisations through one of the most significant technological transitions in decades.

Read more...
Next-generation road-legal race car.
Siemens South Africa IT in Manufacturing
Siemens Digital Industries Software has announced that Briggs Automotive Company (BAC) will move to the Siemens Xcelerator portfolio of industry software and use it to develop the next generation of its single-seater road-legal race car, Mono.

Read more...
Cybersecurity at a crossroads
IT in Manufacturing
here’s a growing unease in boardrooms, data centres and cabinet offices across South Africa. It’s not just about economic headwinds or political uncertainty, it’s about something quieter, more technical and yet just as dangerous - the rising tide of cyber threats.

Read more...
Enabling a sustainable industrial organisation
IT in Manufacturing
This article explains the top sustainability trends and key actions that you can leverage to become a more sustainable organisation.

Read more...
Navigating discrete manufacturing in South Africa through digitalisation
IT in Manufacturing
South Africa’s discrete manufacturing sector faces mounting pressure from global competition, fragmented supply chains and outdated infrastructure. In this complex environment, digitalisation is a critical lever for survival, resilience and growth.

Read more...
Africa’s pragmatic approach to AI and how data centres are enabling it
Schneider Electric South Africa IT in Manufacturing
In Africa, the current AI momentum is driven by a fundamental need, building a resilient digital infrastructure that addresses the real-world challenges of the continent’s communities.

Read more...
World first simulation of error-correctable quantum computers
IT in Manufacturing
Quantum computers still face a major hurdle on their pathway to practical use cases, their limited ability to correct the arising computational errors. In a world first, researchers from Chalmers University of Technology in Sweden have unveiled a method for simulating specific types of error-corrected quantum computations.

Read more...
Platform to accelerate supply chain decarbonisation
Schneider Electric South Africa IT in Manufacturing
Schneider Electric has launched Zeigo Hub by Schneider Electric, a powerful new digital platform designed to help organisations decarbonise their supply chains at scale.

Read more...
Future-ready data centres
IT in Manufacturing
The white paper ‘Future-Ready Data Centres’ by Black & Veatch outlines how integrating sustainable design principles not only helps meet ESG goals but also ensures reliability, operational efficiency and business continuity in the face of climate change and growing digital demand.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved