IT in Manufacturing


Safety, software and statistics

July 2011 IT in Manufacturing

Statistics is an area which can look impressive in mathematical circles. In a nutshell, given sufficient samples and assuming all the factors are considered, past trends can be a reasonable indicator of future events. However, as weather forecasters know all too well, the field of statistics can only result in a probability. It may be predicted that the chances of rain today are 80%. But there is always a chance of 20% that it will not rain. Reliance on probabilities to forecast individual specific events precisely is therefore flawed, because a probability is by definition based on an uncertain set of factors and the probability is only valid given sufficient samples.

In the real world, risk is a reality. Throughout history, humans have tried to mitigate against risks, from avoiding sabre-toothed tigers to depressurising a vessel carefully before drilling into it for maintenance. Those risks that cannot be adequately mitigated need to be avoided or simply accepted (move far away from sabre-toothed tigers or do not ever drill into a pressure vessel).

How is risk usually assessed?

In hazardous industries, risk assessments are a fundamental part of the management of safety. Risk assessments are used to identify those risks serious enough to demand attention. A common approach used in industry to quantify risk is to consider the probability of an incident on a scale of 1 to 5, and at the same time the consequences should the incident occur, also on a scale of 1 to 5. The product of the two numbers is the overall risk figure. The risk can be plotted on a graph or so-called ‘heat map’ where the top right quadrant shows risks with a high probability and a serious consequence and the bottom left quadrant shows low probability and low consequence.

In general, because companies cannot concentrate on all risks, they tend to look at the Top 10 or some other ranking. These Top 10 risks are typically found in the hot zone of the heat map (top right quadrant). This approach is simple, practical and useful, but is however flawed in three main respects:

1. The probability of a risk occurring is based on judgment, is a statistical metric and is therefore imprecise in predicting specific future events.

2. The risks with very low probabilities and very high consequences are sometimes not in the Top 10. (For example a nuclear accident: high consequence, low probability).

3. The risk can change over time for any number of reasons such as plant modifications, operational changes or new factors. The time between the risk assessment and the actual work in hazardous environments can be the difference between an accident taking place or apparent ‘safe work’.

Leading indicators of safety are sometimes used to predict the underlying probability of an incident. Whether or not this is a reliable tool is a whole debate in its own right, but companies often use these because they are practical and useful. For example, the number of accidents per man hour worked, or the number of near misses, are both leading indicators that can predict an increase in the underlying probability of an accident. Furthermore, a near miss usually results in some actions taken to avoid the incident in future, thereby reducing the risk over time. When these indicators increase, further action needs to be taken (so the theory says) to address those factors that are resulting in unsafe conditions. Again this approach can be flawed if it is not realised that leading indicators are also statistically derived and therefore imprecise. Also, management is often totally unaware of what action is actually required to contain rising indicators, especially if the causes are behavioural or cultural in nature.

The right software can help

Software systems that address safety holistically need to embrace several factors. They need to recognise the value of leading indicators and have a good incident and near-miss management capability and enable behavioural safety observations and measurements. They need to recognise the importance of assessing safety related risks at multiple levels – in the engineering and design process (such as HAZOP outputs), as well as in the actual operations (such as permit to work). They need to recognise the dynamic nature of operational environments and have good change management processes to measure the impact of modifications on operational risk. Finally, they need to have the capability to relate patterns and links in the data to warn people of risks that are the combined result of multiple simultaneous factors.

For example, maintenance work on equipment + recent modification to equipment + previous incidents related to equipment + standing work procedure in use = overall risk. This overall risk is something for example that is not evident to people who inspect the work sites, but is the result of advanced system analytics that can correlate data intelligently to derive new insights. Few EHS systems achieve this level of vital insight which is likely to be successfully developed only by those vendors who focus on operational safety systems.

Be wary of inappropriate statistics and oversimplified risk management processes. Be thorough in approach and have multiple strategies to manage safety. Finally seek systems that have an holistic view on safety and at the same time are practical and easy to use. Once the system is in place, look to improve the quality of risk information continuously by adding modules such as incident management, permit to work, engineering change management and advanced analytics that generate new safety-related insights.

For more information contact Gavin Halse, ApplyIT, +27 (0)31 514 7300, [email protected], www.applyit.com





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Optimising the product design process
Siemens South Africa IT in Manufacturing
OPmobility is partnering with Siemens to adopt its Teamcenter X Product Lifecycle Management software. OPmobility’s increasingly complex products now include electronics and software, to create energy storage systems, which include battery and hydrogen electrification solutions and fuel tanks.

Read more...
Smart milling for resilient, sustainable food production
IT in Manufacturing
As the global demand for food continues to rise due to increasing urbanisation, the milling industry faces the challenge of balancing efficiency with sustainability. Bühler is committed to making milling more energy-efficient while maintaining high operational performance. Its solutions allow mills to reduce energy costs and ensure long-term sustainability.

Read more...
The evolving landscape of data centres in the age of AI
Schneider Electric South Africa IT in Manufacturing
The data centre industry is undergoing a period of rapid transformation, driven primarily by the explosive growth of AI. It’s clear that the demands of AI are reshaping the very foundations of data infrastructure. This isn’t merely about incremental upgrades; it’s a fundamental shift in how we design, power and operate these critical facilities.

Read more...
SA Food Review
IT in Manufacturing
Food Review is a monthly trade journal for South Africa’s food and beverage manufacturing industry, for industry professionals seeking detailed information on trends, technologies, best practices and innovations.

Read more...
Keeping an eye on oil consumption with moneo
ifm - South Africa IT in Manufacturing
Manufacturing companies in the metal industry need oils and other fluids that are consumed by their machines. To make this consumption transparent and to establish a link to the ERP system, Arnold Umformtechnik relies on the IIoT platform, moneo, in combination with the SAP-based software solution Shop Floor Integration (SFI) – both from ifm.

Read more...
AI accelerates energy transformation
RJ Connect IT in Manufacturing
With the rapid expansion of generative AI applications, data centre power demand is reaching unprecedented levels.

Read more...
Revolutionising mining operations with MineOptimize
IT in Manufacturing
Now more than ever, mining and mineral processing companies need to boost productivity, ensure safety, and protect the environment. ABB’s comprehensive electrification, automation and digital solutions portfolio is ideally positioned to meet these challenges across all mining processes, from mine to port, transforming performance in a digital world.

Read more...
Buildings in Africa’s urban evolution
Schneider Electric South Africa IT in Manufacturing
Africa is now an urban continent. How does the continent mobilise to accommodate urban dwellers and maintain and implement critical infrastructure that allows for this expansion? Building management systems provide a tangible solution to optimise resource use, lower operations costs and ultimately contribute to a growing continent that also employs green practices.

Read more...
TwinCAT Vision functionality extended
Beckhoff Automation IT in Manufacturing
The image processing and camera integration capabilities of Beckhoff’s TwinCAT 3 Vision software have been expanded.

Read more...
Automation software to future-proof your operations
Adroit Technologies IT in Manufacturing
As the official partner of Mitsubishi Electric Factory Automation, Adroit Technologies empowers businesses with cutting-edge solutions that reduce costs, improve quality and increase productivity.

Read more...