IT in Manufacturing


Safety, software and statistics

July 2011 IT in Manufacturing

Statistics is an area which can look impressive in mathematical circles. In a nutshell, given sufficient samples and assuming all the factors are considered, past trends can be a reasonable indicator of future events. However, as weather forecasters know all too well, the field of statistics can only result in a probability. It may be predicted that the chances of rain today are 80%. But there is always a chance of 20% that it will not rain. Reliance on probabilities to forecast individual specific events precisely is therefore flawed, because a probability is by definition based on an uncertain set of factors and the probability is only valid given sufficient samples.

In the real world, risk is a reality. Throughout history, humans have tried to mitigate against risks, from avoiding sabre-toothed tigers to depressurising a vessel carefully before drilling into it for maintenance. Those risks that cannot be adequately mitigated need to be avoided or simply accepted (move far away from sabre-toothed tigers or do not ever drill into a pressure vessel).

How is risk usually assessed?

In hazardous industries, risk assessments are a fundamental part of the management of safety. Risk assessments are used to identify those risks serious enough to demand attention. A common approach used in industry to quantify risk is to consider the probability of an incident on a scale of 1 to 5, and at the same time the consequences should the incident occur, also on a scale of 1 to 5. The product of the two numbers is the overall risk figure. The risk can be plotted on a graph or so-called ‘heat map’ where the top right quadrant shows risks with a high probability and a serious consequence and the bottom left quadrant shows low probability and low consequence.

In general, because companies cannot concentrate on all risks, they tend to look at the Top 10 or some other ranking. These Top 10 risks are typically found in the hot zone of the heat map (top right quadrant). This approach is simple, practical and useful, but is however flawed in three main respects:

1. The probability of a risk occurring is based on judgment, is a statistical metric and is therefore imprecise in predicting specific future events.

2. The risks with very low probabilities and very high consequences are sometimes not in the Top 10. (For example a nuclear accident: high consequence, low probability).

3. The risk can change over time for any number of reasons such as plant modifications, operational changes or new factors. The time between the risk assessment and the actual work in hazardous environments can be the difference between an accident taking place or apparent ‘safe work’.

Leading indicators of safety are sometimes used to predict the underlying probability of an incident. Whether or not this is a reliable tool is a whole debate in its own right, but companies often use these because they are practical and useful. For example, the number of accidents per man hour worked, or the number of near misses, are both leading indicators that can predict an increase in the underlying probability of an accident. Furthermore, a near miss usually results in some actions taken to avoid the incident in future, thereby reducing the risk over time. When these indicators increase, further action needs to be taken (so the theory says) to address those factors that are resulting in unsafe conditions. Again this approach can be flawed if it is not realised that leading indicators are also statistically derived and therefore imprecise. Also, management is often totally unaware of what action is actually required to contain rising indicators, especially if the causes are behavioural or cultural in nature.

The right software can help

Software systems that address safety holistically need to embrace several factors. They need to recognise the value of leading indicators and have a good incident and near-miss management capability and enable behavioural safety observations and measurements. They need to recognise the importance of assessing safety related risks at multiple levels – in the engineering and design process (such as HAZOP outputs), as well as in the actual operations (such as permit to work). They need to recognise the dynamic nature of operational environments and have good change management processes to measure the impact of modifications on operational risk. Finally, they need to have the capability to relate patterns and links in the data to warn people of risks that are the combined result of multiple simultaneous factors.

For example, maintenance work on equipment + recent modification to equipment + previous incidents related to equipment + standing work procedure in use = overall risk. This overall risk is something for example that is not evident to people who inspect the work sites, but is the result of advanced system analytics that can correlate data intelligently to derive new insights. Few EHS systems achieve this level of vital insight which is likely to be successfully developed only by those vendors who focus on operational safety systems.

Be wary of inappropriate statistics and oversimplified risk management processes. Be thorough in approach and have multiple strategies to manage safety. Finally seek systems that have an holistic view on safety and at the same time are practical and easy to use. Once the system is in place, look to improve the quality of risk information continuously by adding modules such as incident management, permit to work, engineering change management and advanced analytics that generate new safety-related insights.

For more information contact Gavin Halse, ApplyIT, +27 (0)31 514 7300, [email protected], www.applyit.com





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Development of motor control units for automotive industry
Siemens South Africa IT in Manufacturing
SEDEMAC has adopted the Siemens Xcelerator portfolio of industry software, which is used in the development of its motor control units and engine control units. The motor control units are used in EVs, hybrids, ebikes and power tools, while the engine control units are used for off-road and on-road engines.

Read more...
Cybersecurity and cyber resilience – the integrated components of a robust cyber risk management strategy
IT in Manufacturing
Organisations continuously face numerous cyberthreats in today’s digital landscape, and while many prioritise cybersecurity to safeguard digital assets, their strategies for cyber resilience often become neglected.

Read more...
Sustainable last-mile delivery electric trucks
Siemens South Africa IT in Manufacturing
Workhorse Group, an American technology company focused on pioneering the transition to zero-emission commercial vehicles, has adopted the Siemens Xcelerator portfolio of industrial software as it builds electric trucks for sustainable last-mile delivery.

Read more...
South Africa’s role in the AGI revolution
IT in Manufacturing
AI has found its way into general conversation after the emergence of large language models like ChatGPT. However, the discussion is increasingly turning to the search for Artificial General Intelligence (AGI), which could entirely change the game.

Read more...
Predictive asset performance management with ABB Ability Genix
ABB South Africa IT in Manufacturing
The ABB Ability Genix APM suite is a comprehensive asset management platform powered by AI, IIoT and model-based predictive data analytics. This enables a paradigm shift towards a more proactive and predictive asset management approach.

Read more...
Intelligent automation primed for $47 billion revenue by 2030
IT in Manufacturing
According to GlobalData, the intelligent automation market is set to grow from $18 billion in 2023 to $47 billion in 2030, driven by advancements in AI, particularly the rapid adoption of generative AI.

Read more...
Chocolate manufacturing with Siemens Xcelerator
Siemens South Africa IT in Manufacturing
Freybadi, one of the largest chocolate manufacturers in Indonesia and a trusted supplier of chocolate in the Asia-Pacific, Middle East and African regions, has adopted the Siemens Xcelerator portfolio of industry software to optimise its manufacturing and production processes.

Read more...
A CFO’s guide to unlocking the potential of gen AI
IT in Manufacturing
CFOs of leading global organisations understand that their role extends beyond mere financial oversight; they are pivotal in steering organisation-wide transformation, particularly in the realm of technological advancement.

Read more...
Higher level cybersecurity certification for Schneider Electric
Schneider Electric South Africa IT in Manufacturing
Schneider Electric’s EcoStruxure IT NMC3 platform has obtained a new and higher level of cybersecurity certification, making it the first data centre infrastructure management network card to achieve SL2) designation from IEC.

Read more...
Industrial automation edge AI
Vepac Electronics IT in Manufacturing
Teguar, a leading provider of industrial computer solutions, has announced an innovative partnership with Hailo, an AI chip maker renowned for its high-performance edge AI accelerators. This marks a significant step forward in Teguar’s mission to provide powerful and reliable computing solutions for a wide range of industries.

Read more...