IT in Manufacturing


Safety, software and statistics

July 2011 IT in Manufacturing

Statistics is an area which can look impressive in mathematical circles. In a nutshell, given sufficient samples and assuming all the factors are considered, past trends can be a reasonable indicator of future events. However, as weather forecasters know all too well, the field of statistics can only result in a probability. It may be predicted that the chances of rain today are 80%. But there is always a chance of 20% that it will not rain. Reliance on probabilities to forecast individual specific events precisely is therefore flawed, because a probability is by definition based on an uncertain set of factors and the probability is only valid given sufficient samples.

In the real world, risk is a reality. Throughout history, humans have tried to mitigate against risks, from avoiding sabre-toothed tigers to depressurising a vessel carefully before drilling into it for maintenance. Those risks that cannot be adequately mitigated need to be avoided or simply accepted (move far away from sabre-toothed tigers or do not ever drill into a pressure vessel).

How is risk usually assessed?

In hazardous industries, risk assessments are a fundamental part of the management of safety. Risk assessments are used to identify those risks serious enough to demand attention. A common approach used in industry to quantify risk is to consider the probability of an incident on a scale of 1 to 5, and at the same time the consequences should the incident occur, also on a scale of 1 to 5. The product of the two numbers is the overall risk figure. The risk can be plotted on a graph or so-called ‘heat map’ where the top right quadrant shows risks with a high probability and a serious consequence and the bottom left quadrant shows low probability and low consequence.

In general, because companies cannot concentrate on all risks, they tend to look at the Top 10 or some other ranking. These Top 10 risks are typically found in the hot zone of the heat map (top right quadrant). This approach is simple, practical and useful, but is however flawed in three main respects:

1. The probability of a risk occurring is based on judgment, is a statistical metric and is therefore imprecise in predicting specific future events.

2. The risks with very low probabilities and very high consequences are sometimes not in the Top 10. (For example a nuclear accident: high consequence, low probability).

3. The risk can change over time for any number of reasons such as plant modifications, operational changes or new factors. The time between the risk assessment and the actual work in hazardous environments can be the difference between an accident taking place or apparent ‘safe work’.

Leading indicators of safety are sometimes used to predict the underlying probability of an incident. Whether or not this is a reliable tool is a whole debate in its own right, but companies often use these because they are practical and useful. For example, the number of accidents per man hour worked, or the number of near misses, are both leading indicators that can predict an increase in the underlying probability of an accident. Furthermore, a near miss usually results in some actions taken to avoid the incident in future, thereby reducing the risk over time. When these indicators increase, further action needs to be taken (so the theory says) to address those factors that are resulting in unsafe conditions. Again this approach can be flawed if it is not realised that leading indicators are also statistically derived and therefore imprecise. Also, management is often totally unaware of what action is actually required to contain rising indicators, especially if the causes are behavioural or cultural in nature.

The right software can help

Software systems that address safety holistically need to embrace several factors. They need to recognise the value of leading indicators and have a good incident and near-miss management capability and enable behavioural safety observations and measurements. They need to recognise the importance of assessing safety related risks at multiple levels – in the engineering and design process (such as HAZOP outputs), as well as in the actual operations (such as permit to work). They need to recognise the dynamic nature of operational environments and have good change management processes to measure the impact of modifications on operational risk. Finally, they need to have the capability to relate patterns and links in the data to warn people of risks that are the combined result of multiple simultaneous factors.

For example, maintenance work on equipment + recent modification to equipment + previous incidents related to equipment + standing work procedure in use = overall risk. This overall risk is something for example that is not evident to people who inspect the work sites, but is the result of advanced system analytics that can correlate data intelligently to derive new insights. Few EHS systems achieve this level of vital insight which is likely to be successfully developed only by those vendors who focus on operational safety systems.

Be wary of inappropriate statistics and oversimplified risk management processes. Be thorough in approach and have multiple strategies to manage safety. Finally seek systems that have an holistic view on safety and at the same time are practical and easy to use. Once the system is in place, look to improve the quality of risk information continuously by adding modules such as incident management, permit to work, engineering change management and advanced analytics that generate new safety-related insights.

For more information contact Gavin Halse, ApplyIT, +27 (0)31 514 7300, [email protected], www.applyit.com





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Sustainable energy management
Siemens South Africa IT in Manufacturing
Utilising its innovative ONE approach technology, Siemens provides complete transparency on resource consumption and offers data-driven optimisation recommendations for sustainable energy management.

Read more...
Paving the way for a carbon-neutral future in South Africa
IT in Manufacturing
At ABB Electrification, we believe the infrastructure of the future must do more than support daily operations, it must anticipate them. We are committed to building intelligent systems that connect and optimise infrastructure across sectors.

Read more...
Africa’s hidden AI advantage
IT in Manufacturing
Through my work implementing AI systems across three continents, I’ve become convinced that Africa’s unique context demands urgent AI adoption. Successful implementation requires local expertise to understand resource constraints as design parameters to create the innovations that make technology truly work under real-world conditions.

Read more...
Siemens Xcelerator empowers space-tech pioneer, Skyroot Aerospace
Siemens South Africa IT in Manufacturing
Siemens Digital Industries Software has announced that Skyroot Aerospace, a leading private space launch service company in India, has adopted Polarion software from the Siemens Xcelerator portfolio to digitally transform its software development processes and enhance efficiency as it aims to accelerate access to space for its customers worldwide.

Read more...
Water is running out, is your ESG strategy ready?
IT in Manufacturing
Water is one of the most critical yet undervalued resources in modern business. Water stewardship asks businesses to understand their water footprint across the entire value chain and to engage with others who share the same water resources.

Read more...
Cybersecurity in 2025: Six trends to watch
Rockwell Automation IT in Manufacturing
Rockwell Automation’s 10th State of Smart Manufacturing report finds that cybersecurity risks are a major, ever-present obstacle, and are now the third-largest impediment to growth in the next 12 months.

Read more...
The state of the smart buildings market in 2025
IT in Manufacturing
Smart buildings are entering a transformative phase, driven by sustainability goals, technological innovation and evolving user expectations. According to ABI Research’s latest whitepaper, the sector is undergoing a strategic overhaul across key areas like retrofitting, energy efficiency, data-driven operations and smart campus development.

Read more...
Digital twin for Bavaria’s National Theatre
Siemens South Africa IT in Manufacturing
Siemens and the Bavarian State Opera are digitalising the acoustics in Bavaria’s National Theatre in Munich, Germany. The result is a digital twin that simulates sound effects, orchestral setups and venue configurations in a realistic 3D acoustic model so that musicians, the director and conductors can assess a concert hall’s acoustics even before the first rehearsal.

Read more...
How AI can help solve South Africa’s water crisis
IT in Manufacturing
Climate change, ageing infrastructure, pollution and unequal access are putting intense pressure on the country’s water systems. A powerful question arises: “Can artificial intelligence help us change course?”

Read more...
Backup has evolved, but has your strategy?
IT in Manufacturing
With cyber threats rising and compliance standards tightening, South African organisations are under growing pressure to revisit their data protection strategies. The era of treating backups as a box-ticking exercise is over.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved