IT in Manufacturing


Plan to optimise

February 2011 IT in Manufacturing

In typical process supply chains, proper forecasting, planning and scheduling optimisation are essential to reduce costs, enhance operational service levels and minimise inventory. In the real world this may appear to be a highly complex problem, impossible to solve and full of potential pitfalls. However, advanced forecasting, planning and scheduling software exists that can reliably deliver optimised plans, and this software can easily be understood without a mathematics degree if the problem is broken down into the relevant layers and the basic principles of planning.

Examples of complex planning and scheduling problems abound in breweries, food processing, chemicals, pharmaceuticals and lubricant blending. These plants are characterised by the need to manufacture multiple products in batch or semi-batch processes with multiple production lines. The products need to be scheduled optimally to meet an anticipated demand pattern by the end consumer.

The problem is often made even more complex by a distribution network between the producing plant and the customer. Several physical constraints also apply, such as the need to blend liquids into tanks or take account of shelf life constraints. Alternative recipes and utility constraints, such as the availability of steam and cleaning utilities, can further compound the complexity of optimisation.

The levels of planning

Mathematically it is possible to define the planning problem quite precisely, and one can apply a number of computer-based mathematical techniques to obtain a production plan. However, selecting the right method, understanding and focusing on the factors that really matter and correctly interpreting the results of an optimisation is like playing chess. The rules can be described precisely, yet owing to the almost infinite number of alternatives, it takes a grandmaster to predictably make the right strategic decisions and play the right moves. In these situations experience does matter, and similarly planners with a good understanding of the business are a vital element.

However, business people also have an obligation to understand the planning process properly. Supply chain planning and scheduling is easily understood by decomposing the problem and looking separately at the different layers of planning:

1. At the highest planning level, demand forecasting seeks to predict overall demand for a particular product. This forecasting takes place with a long time horizon, often many seasons or years.

2. At the second intermediate planning level, network optimisation seeks to balance demand with production and distribution capacity across multiple plants and multiple stock points. The time horizon in this instance is typically months or weeks.

3. At the third, most detailed planning level, production scheduling seeks to interpret production requirements and make them applicable to a single plant by producing an optimised schedule that takes into account availability of physical equipment such as pumps, tanks and packaging lines. Here the time horizon is hours, shifts or batches.

4. Finally, the results are fed to the execution system, where production is actually executed on the physical plant. This is typically referred to as the MES or manufacturing execution system layer.

Forecasting vs optimisation

It is important to recognise that there is a fundamental difference between forecasting and optimisation, both in concept and in the mathematical tools and techniques used. Forecasting takes into account historical and other information to produce a realistic demand forecast for a family of products. The statistical methods used are usually highly advanced and finely tuned. The user of such tools does not need to be concerned with the actual statistical engine – the focus is on accurately predicting the future and accounting for abnormal events (marketing campaigns, the impact of major events such as the FIFA World Cup). The statistical engine will take historical patterns of demand, identify and ignore outliers (data that does not conform statistically to the pattern) and project this forward. In practice the software’s ability to interact with the user in a graphical and intuitive way is important.

Physical constraints

Optimisation, on the other hand, is concerned with optimising a result where there are several constraints on the variables. The variable being optimised is typically referred to as the objective function. Examples of an objective function could be total cost, made up of production costs, warehousing costs, transport costs and others.

The constraints used in optimisation are typically physical in nature, such as plant configuration or maximum production rate. However, constraints can also be soft – for example it is undesirable to increase the volume of road transport because of the long term impact on infrastructure and road maintenance. Soft constraints can be violated from time to time, whereas physical constraints cannot be violated.

The goal of supply chain optimisation is to derive first a feasible plan from the forecast, and then to refine this to an optimum plan. The word feasible in this context means that all constraints have been satisfied and the plan can be executed in the physical world. Optimum means that in addition to being feasible, the plan is the result of evaluating many alternative plans to derive one where the objective function has been optimised.

A typical planning process starts with demand forecasting which determines the likely consumption patterns for specific products. This demand plan is then cascaded to the planning system, which prepares a feasible and optimised production plan relating to overall targets, logistics and warehousing/stock parameters. Finally, the optimised plan is cascaded to scheduling systems to produce batch or shift plans at the detailed level.

It should be mentioned that no planning system would work without a feedback mechanism that compares actual performance against plan, and a process of refining and improving the plan on an ongoing basis.

Business decision-makers need only to understand the basics of the multilayer approach to planning and scheduling. While the detailed plans themselves are still prepared by the experts (the chess grandmasters in the company), with a fundamental understanding of the above principles, better business decisions can be taken, leading to reduced costs, improved service and lower inventory levels.

For more information contact Gavin Halse, ApplyIT, +27 (0)31 514 7300, [email protected], www.applyit.com





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

How digital infrastructure design choices will decide who wins in AI
Schneider Electric South Africa IT in Manufacturing
As AI drives continues to disrupt industries across the world, the race is no longer just about smarter models or better data. It’s about building infrastructure powerful enough to support innovation at scale.

Read more...
How quantum computing and AI are driving the next wave of cyber defence innovation
IT in Manufacturing
We are standing at the edge of a new cybersecurity frontier, shaped by quantum computing, AI and the ever-expanding IIoT. To stay ahead of increasingly sophisticated threats, organisations must embrace a new paradigm that is proactive, integrated and rooted in zero-trust architectures.

Read more...
2026: The Year of AI execution for South African businesses
IT in Manufacturing
As we start 2026, artificial intelligence in South Africa is entering a new era defined not by experimentation, but by execution. Across the region, the conversation is shifting from “how do we build AI?” to “how do we power, govern and scale it responsibly?”

Read more...
AIoT drives transformation in manufacturing and energy industries
IT in Manufacturing
AIoT, the convergence of artificial intelligence and the Internet of Things, is enhancing efficiency, security and decision making at manufacturing, industrial and energy companies worldwide

Read more...
Today’s advanced safety system is but the beginning
Schneider Electric South Africa IT in Manufacturing
Industrial safety systems have come a long way since the days of hardwired emergency shutdowns. Today, safety systems are not just barriers against risk; they are enablers of safer operations.

Read more...
Siemens brings the industrial metaverse to life
Siemens South Africa IT in Manufacturing
Siemens has announced a new software solution that builds Industrial metaverse environments at scale, empowering organisations to apply industrial AI, simulation and real-time physical data to make decisions virtually, at speed and at scale.

Read more...
Five key insights we gained about AI in 2025
IT in Manufacturing
As 2025 draws to a close, African businesses can look back on one of the most pivotal years in AI adoption to date as organisations tested, deployed and learned from AI at pace. Some thrived and others stumbled. But the lessons that emerged are clear.

Read more...
South Africa’s AI development ranks 63rd in the world
IT in Manufacturing
The seventh edition of the Digital Quality of Life Index by cybersecurity company, Surfshark ranks South Africa 75th globally.

Read more...
Optimising MRO operations through artificial intelligence
RS South Africa IT in Manufacturing
AI is reshaping industrial operations at every level in the maintenance, repair and operations supply chain, where it is driving efficiency, predictive insight and smarter decision making.

Read more...
Data centres in an AI-driven future
Schneider Electric South Africa IT in Manufacturing
A profound transformation will begin to take hold in 2026 as AI becomes ever more ingrained in every aspect of life, and the focus shifts from LLMs to AI inferencing.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved