PLCs, DCSs & Controllers


PC-based control - it is time for change

January 2011 PLCs, DCSs & Controllers

In many process plants, the PLC simply plays the role of an ‘interlock’ or PID code repository, with most of the system intelligence based in the external scada, MES or analysis software application zones.

Volumes of I/O and tag variables are scaled and mapped to higher-level systems, essentially just providing the process image to the intelligence layers. In this context, the computational power of the PLC is less important than its memory capacity and its communication throughput to the control platforms. It makes complete sense to use a PLC more as an I/O interface than as a process controller here, since the intricacies of large scale process plants often fall outside the scope of the traditional PLC programmer, or PLC for that matter. The ability to adapt to complex control cycles easily through parameter exchange rather than PLC program development is final justification for these types of control systems.

Parameter exchange vs machine control

The automotive industry is an example of more intense PLC utilisation. In this and similar industries, the PLC often acts as a ‘hub’ for connecting separate intelligent systems. This integration between systems and machines involves a higher degree of communication flexibility, as well as rigorous integration with safety logic. In production, it is common to see PLC connections to vision or inspection systems, conveyors, barcode and RFID readers, bolting and press fit machines as well as marking and printing facilities. Always, there are numerous systems with their own intelligence, while the exchange of typical Start/Stop/Done parameters still happens through hard-wired I/O or fieldbusses. When compared to typical process plant PLC implementations, the variety of distributed control and intelligence is higher. It is also more common to see production variations implemented at PLC level. Producing several different components on one machine or production line is common, but involves many mechanical and electrical adaptations more easily accomplished through PLC code integration rather than the parameter adjustments common in process plants.

OEMs demanding more

A unique level of PLC utilisation can be found in OEM machine building. Whether you are manufacturing specialised welding, cutting, injection moulding or test and verification beds – your PLC requirements are even more demanding than those just described. The combination of fast motion control and high accuracy of movement requires multi-faceted controllers. Even though many servo drives are capable of standalone operation, full scale integration and rapid response make the use of combined PLC/NC controllers a viable option. OEMs need to keep costs and component count down, leaving little room for large scale use of ‘black-box’ solutions. All sensors and actuators need direct termination to PLC I/O as efficiently as possible – the use of standard controllers across different machines is required. This simplifies inventory to the choice of a memory card to determine the destined machine function of a PLC. Visualisation is also required to be more local and less complex. Combined with data storage and remote software serviceability, these all form excellent arguments for PC based control.

New PLC capabilities mean new markets

Technologies such as combined PLC and HMI elements, TCP/IP and wireless communication have lead to new opportunities for PLCs. Industries where test and measurement tasks often relied on dedicated equipment with high integration costs are now easily within reach of many modern medium level devices. The technology drive of the IT industry is constantly pushing the price of semiconductors down and performance levels up to the point where full-scale adoption by the PLC market must become inevitable. Chipsets with built in serial transmission and Ethernet connectivity mean reduced size and implementation costs in PLC design. Modern IT chipsets like that of the ARM and Intel Atom configurations allow for high performance control, while still maintaining temperature and environmental tolerances well within the levels required of a PLC. For many manufacturers, I believe the intellectual property held in their communication and multitasking functionality will soon exceed the importance of pure memory and number crunching abilities. Older PLC CPUs with limited amounts of timer/counter/memory blocks cannot compete with modern integrated solutions for high-end applications. The flexibility of modern controllers has opened up applications like building automation, wind energy generation, robotics, medical engineering and many others.

Actual machine benefits

Let us consider the functions a PLC must fulfil in what seems like a simple application. A bagging machine needs to weigh product as it travels, close a flap at the correct weight, and then seal the top of the bag. But, the machine builder wants to offer more to his customers without having to add much complexity to the machine. Among his wish list are things like: more accurate filling; historic logging; recipes for different sized bags; simple visualisation; remote diagnostics; easy parameter adjustments; notifications and plant integration functionality. The goals are clear, make a machine that is easy to use and understand, will push information to the relevant personnel and has the ability to adapt to the needs of different customers with minimum re-engineering. Modern PLCs easily cater for all these needs.

Data-logging

Over history, machines are now capable of recording predicted versus achieved fill weights. Simple changes to the flap closure rate then allow the machine to self-tune for different bag variations. Not only is the historic data valuable for self-tuning, but it also allows accurate data storage to satisfy FDA and similar regulations. The addition of an RFID or barcode scanner to the system allows direct variant identification and exact product traceability.

Recipe control

This could easily be handled by the PLC through XML data files. A normal database could handle this as well of course, but many manufacturers prefer independent XML files due to the ease of distributing complex recipes to different machines. PLCs now have the ability to read (and write) XML files as well as CSV, XLS and any other text-formatted files. This allows modification from user inputs on the HMI or across the network from a PC. New recipe files can even be stored on an FTP site, allowing the PLC to retrieve updated recipe files at set intervals.

Visualisation

Machine control solutions seldom require 3D graphics or vector scaled images. A simple diagram outlining the machines components, operating state, alarms, I/O checklist and recipe configuration is mostly all that is needed. Modern PLCs allow for onboard visualisations, either through DVI/USB connections to touch panels or through built-in displays. Another convenience to the machine builder is the benefit of being able to stream HMI across the network/Internet for authorised use by personnel in remote locations. The bag machines live view, its I/O list, its alarm table, its function view, its historical data, its auto-tuned closing performance as well as its recipe management; can all easily be implemented in the same software environment that the IEC-61131-3 programming takes place.

Standardised software development makes it all possible

To implement all these added features and benefits in the modern PLC, we need an open, easy to use IEC 61131-3 PLC programming environment. The fact that approved Function Blocks already exist for most of these advanced functions then makes implementation quick and easy. Open integration into the .NET framework for expansion and external code integration future proofs your software and keeps one integrated platform for different modules. Module-based automation in software means: real-time performance; motion control; safety; hardware management; data-logging; remote connections and all forms of extensions realised in one easy to manage open PLC software development tool.

Due to the modular structure of the interfaces already predefined for many applications, there is now the possibility to instance the different controllers on the machine’s central control hardware. These can also now be created independently of one another, and in different programming languages allowing the large selection of existing (or self-developed) basic modules to form an automation kit from which new applications can be created easily.

This is the key to extended PC based control functionality.

Conrad Muller
Conrad Muller

For more information contact Kenneth McPherson, Beckhoff Automation, +27 (0)11 795 2898, [email protected] , www.beckhoff.co.za



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Innovative separation of recyclable materials
Beckhoff Automation Fieldbus & Industrial Networking
A plant built by Belgian specialist machine builder, Absolem Engineering features an innovative process for separating recyclable materials. Using PC-based control from Beckhoff, a major problem has been elegantly solved - the generation of different signal sequences for the exact synchronisation of different camera systems.

Read more...
ABB updates distributed control system
ABB South Africa PLCs, DCSs & Controllers
Leveraging 30 years of continuous innovation and reliability, ABB’s updated Freelance 2024 distributed control system (DCS) offers greater plant adaptability, faster and more reliable device communication, improved system security, and seamless data exchange.

Read more...
Four ways modern operations control can boost sustainability and efficiency
PLCs, DCSs & Controllers
With the growing importance of digital transformation, HMIs and scada have evolved from control panels to vast operational hubs. Next-gen HMI/scada can bring together data, personalisation, and advanced insights to successfully achieve organisational goals, it is important to think about HMI/scada holistically within the operations ecosystem.

Read more...
Open control system for retrofit of conveyor control system
Beckhoff Automation Editor's Choice
For every online retailer, warehouse logistics is part of the critical infrastructure. An Australian office equipment supplier has retrofitted the warehouse logistics installation of its central warehouse, and replaced the proprietary decentralised controllers of the conveyor lines with PC-based control from Beckhoff, based on powerful EtherCAT communication.

Read more...
The convergence of intelligence: DCS, SCADA and TLC
Schneider Electric South Africa PLCs, DCSs & Controllers
In the early days of industrialisation, control systems were primarily mechanical, and relied on manual intervention and simple feedback loops to manage processes. Now, in the 21st century, industrial process automation systems are mind-blowingly intelligent, and provide almost unparalleled control and monitoring capabilities, making them integral to modern industrial systems.

Read more...
PC-based control for advanced hydrogen storage technology
Beckhoff Automation Editor's Choice PLCs, DCSs & Controllers
The proportion of renewable energies from solar, wind and water is rising continuously. However, sufficient storage options are of the essence to use these energies as efficiently as possible. GKN Hydrogen offers a particularly compact and safe option, low-pressure metal hydride hydrogen storage systems with PC-based control from Beckhoff.

Read more...
ABB modernises key board mill
ABB South Africa PLCs, DCSs & Controllers
ABB has secured a landmark contract to modernise Smurfit Kappa’s Paper Machine 5 at its corrugated cardboard mill near Mexico City. ABB will provide Smurfit Kappa with DCS, accompanied by a comprehensive paper machine drives system, encompassing some of the market’s most advanced drives and motors meticulously designed to optimise PM5’s performance.

Read more...
The synapses of the distributed control system
Schneider Electric South Africa PLCs, DCSs & Controllers
Industrial operations require a distributed control system (DCS) to coordinate and control their process subsystems in real time. Like the brain, a DCS is a multitasking maestro, controlling and coordinating complex processes in a myriad of industrial setting such as large manufacturing plants, providing valuable top-down control.

Read more...
Modular assembly platform for clean manufacturing
Beckhoff Automation PLCs, DCSs & Controllers
JR Automation delivers custom automated solutions for numerous industries. It has done this through its scalable, modular automation platform, FlexChassis, which speeds up time to market while cutting costs. The company chose the XTS linear transport system from Beckhoff because of its speed, and modular design that allows for multiple configurations.

Read more...
Automation of a thermoforming machine for recyclable packaging
Beckhoff Automation IT in Manufacturing
Renewable cellulose is an excellent alternative, which is why Hamer has joined forces with Beckhoff to develop a thermoforming machine for water-based cellulose pulp.

Read more...