Analytical Instrumentation & Environmental Monitoring


Optimised CIP processes

August 2010 Analytical Instrumentation & Environmental Monitoring

Emerson Process Management’s four-electrode conductivity sensors are helping German brewer Schneider Weisse to optimise the CIP process at its brewery in Bavaria. Replacing ageing sensors with the accurate Rosemount Analytical 410VP has enabled the brewer to optimise its process by reducing the total caustic detergent, water and energy used, as well as saving previously wasted finished product. In addition, Schneider Weisse is now able to bring production back online quicker, enabling a potential increase in overall production.

“We continually strive to improve our production processes in order to maximise output and efficiency,” said Norbert Appoltshauser, automation manager, Schneider Weisse. “We do this by taking advantage of the latest innovative technologies. For instance, we identified an opportunity to measure the interface between the CIP rinse water and end product more accurately and have been delighted with the results. At Schneider Weisse we are continuously reviewing opportunities for process optimisation in order to remain competitive.”

CIP applications in the food and beverage industry present a number of challenges for conductivity sensors, devices must be easy to clean and able to withstand rapid changes in temperature. Conductivity sensors used for this type of measurement are often encased in plastic and in general do not respond well to rapid temperature changes. They also protrude into the pipe creating an intrusion, which can disrupt flow in smaller lines. These factors all add up to reduce the dependability of the conductivity measurement. As brewers have to ensure the effectiveness of the CIP process, while minimising product losses, the ability to optimise the process by introducing a more accurate instrument for the measurement of conductivity is attractive.

Working in co-operation with GEA Brewery Systems, three existing electrode conductivity sensors installed within pipes supplying the fermentation and storage tanks were replaced with Emerson’s Rosemount Analytical 410VP sensors. The existing sensors were ageing and unreliable, causing false switching during the different phases of the CIP process. Replacement parts were also not available.

The sensors determine electrolytic conductivity which allows monitoring of the concentration of the clean-in-place (CIP) solution, and the interface between rinse water and end product. The CIP system is used to clean the process piping 12 times a day with each process including three water flushes of three minutes duration. The CIP process uses a caustic solution to wash through and ensure product integrity. The wash cycle includes a pre-flushing stage, followed by a caustic solution, an intermediate flushing, an acid solution, and then a final flush prior to restarting of production.

During an initial four week trial period, Schneider Weisse identified that the Rosemount 410VP sensor was operating effectively. The accuracy of the conductivity and temperature measurements are critical to optimising the process. Using the Rosemount sensor to identify the exact point at which the different phases start and stop, and when the interface between the CIP rinse water is replaced by in-specification beer, it has been possible to reduce the duration of each flush from three minutes to one minute. This has reduced the total flush time by 72 minutes a day.

As well as delivering clear environmental benefits, using less wash water saves Schneider Weisse around €8000 a year. Approximately 3000 kW/h of electrical energy is also saved. With the faster detection of the different phases, Schneider Weisse sees the potential for further optimisation and eventually to increase overall beer production.

Anton Ladenburger, sales manager, GEA brewery systems says, “The Rosemount device offers improved levels of accuracy and reliability over traditional technology. Also, the Varivent connection allows the sensor to sit flat within the pipes, avoiding potential crevices and it can be easily fitted to the bottom of the pipe which ensures it is always wet.”

The 410VP sensor’s four-electrode design provides accurate linearity and responds well to rapid temperature changes. The sensor has a flat sensing face consisting of four circular electrodes arranged in a row. The analyser injects an alternating current through the outer electrodes and measures the voltage across the inner electrodes. The conductance of the electrolyte solution between the voltage electrodes is readily calculated from the measured current and voltage. Because the voltage measuring circuit draws almost no current, errors caused by series capacitance and cable resistance, which are significant in two-electrode measurements at high conductivity, are virtually eliminated.

The sensors are located in different areas of the plant where there is a mixture of 230 VAC and 24 VDC supply. This resulted in Schneider Weisse having to use two different sensors in the past. By offering the capability to work using either 230 VAC or 24 VDC, the Rosemount 410VP could be applied in both areas of the plant, reducing inventory and training requirements.

“We are extremely confident of the new measurement system,” explained Appoltshauser. “The improved accuracy of the conductivity measurements has enabled us to identify the exact point when the interface has passed through the process, allowing us to return to full production in a shorter time span. False switching has been eliminated and the different CIP phases are detected within just two seconds – this is very fast.”

Existing connections within the pipes enabled the rapid installation of the factory calibrated 410VP sensors. Rosemount Analytical Model 1056 intelligent analysers incorporating a simple to use menu navigation screen ensured that the sensors were easily set up.

“The 1056 analysers are simple to work with and because the sensors are pre-calibrated the functional commissioning was straightforward, intuitive and self explanatory. We are delighted with the new system, it is very different from anything we have been used to,” concluded Appoltshauser.

For more information contact Luculle Stols, Alpret Control Specialists, +27 (0)11 249 6700, [email protected], www.alpret.co.za



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

The importance of environmental monitoring and visibility at data centres
Legrand Analytical Instrumentation & Environmental Monitoring
Data centres are one of the most energy-intensive building types, consuming up to 50 times the energy per floor space compared to a typical commercial office building. With organisations embracing advanced technologies, data centres powering these technologies are under increasing pressure around the globe to increase capacities and improve efficiencies.

Read more...
Analysers for use in high ambient temperature environments
Analytical Instrumentation & Environmental Monitoring
The 993X series of analysers from Ametek Process Industries are now IECEx Zone 2 certified for use in locations with up to 60°C ambient temperature. Built with IP66-rated enclosures and using an integrated cooling system, they can be installed outdoors or in minimally temperature-controlled enclosures, reducing complexity while lowering capital and operating costs.

Read more...
ATEQ is adapting to evolving markets
ATEQ South Africa Analytical Instrumentation & Environmental Monitoring
ATEQ is a global company that has established itself as a world leader in leak test technologies and industrial quality control equipment. The company’s mission is to help its customers remain compliant with regulations and maintain product quality through its range of support services.

Read more...
The art of precision measurement
Analytical Instrumentation & Environmental Monitoring
To achieve precise, reliable measurement results when scanning component parts, use is frequently made of reference points. In optical measuring processes, these permit the referencing of three-dimensional objects during the digitisation.

Read more...
Vibration test system supports international space industry
TANDM Technologies Analytical Instrumentation & Environmental Monitoring
Dragonfly Aerospace has launched EOS SAT-1, one of seven satellites in the world’s first agricultural-focused constellation. With optimisation of resources being a key component for Dragonfly, it called on TANDM to assist in creating and heavily expanding its environmental testing capabilities by providing a vibration test system that allowed it to perform in-house vibration and shock testing.

Read more...
Sensor technology for brewing
Endress+Hauser South Africa Analytical Instrumentation & Environmental Monitoring
Brewing is a delicate balance, blending tradition with innovation. Now, modern sensor technology is stepping in to perfect the art of fermentation.

Read more...
Loesche gets dirty
Loesche South Africa Analytical Instrumentation & Environmental Monitoring
The world’s attention is on environmental sustainability, and the pressure on countries and companies to demonstrate their commitment to preserving the environment and preventing climate change is at an all-time high. As we confront a multitude of environmental and social challenges, managing waste and maximising landfill diversion can play a key role.

Read more...
Water systems with energy savings and sustainability
Labotec Analytical Instrumentation & Environmental Monitoring
ELGA Veolia has relaunched its award-winning PURELAB flex range, with features to reduce the system’s environmental footprint and incorporate some of the latest innovations in water purification technologies. The ecological improvements integrated into the flex range have been made to reduce water and power consumption.

Read more...
Keeping an eye on invisible radiation
Omniflex Remote Monitoring Specialists Analytical Instrumentation & Environmental Monitoring
At its peak in 1994, the energy generation capacity of the UK’s nuclear power stations was 12,7 GW across 16 plants. In 2024, the capacity has fallen to around 5 GW, and the number of stations is down to nine. However, this is far from the end of the story as spent nuclear fuel remains radioactive for centuries, and requires rigorous safety processes to safeguard against leaks.

Read more...
Technology for water sustainability
Endress+Hauser South Africa Analytical Instrumentation & Environmental Monitoring
The sustainability of surface water is critical for South Africa’s economic development, social well-being and environmental health. Endress+Hauser has a full range of liquid analysis sensors and transmitters to measure important parameters and has an excellent global track record in water and wastewater process plants and various surface and industrial water monitoring sites.

Read more...